Skip to main content
Log in

Effect of a low density dust shell on the propagation of gravitational waves

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Using the Bondi-Sachs formalism, the problem of a gravitational wave source surrounded by a spherical dust shell is considered. Using linearized perturbation theory, the geometry is found in the regions: in the shell, exterior to the shell, and interior to the shell. It is found that the dust shell causes the gravitational wave to be modified both in magnitude and phase, but without any energy being transferred to or from the dust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Esposito, F.P.: Astrophys. J. 168, 495 (1971). https://doi.org/10.1086/151103

    Article  ADS  Google Scholar 

  2. Ehlers, J., Prasanna, A.R., Breuer, R.A.: Class. Quantum Grav. 4(2), 253 (1987). https://doi.org/10.1088/0264-9381/4/2/009

    Article  ADS  Google Scholar 

  3. Ehlers, J., Prasanna, A.R.: Class. Quantum Grav. 13(8), 2231 (1996). https://doi.org/10.1088/0264-9381/13/8/016

    Article  ADS  Google Scholar 

  4. Hawking, S.W.: Astrophys. J. 145, 544 (1966). https://doi.org/10.1086/148793

    Article  ADS  Google Scholar 

  5. Esposito, F.P.: Astrophys. J. 165, 165 (1971). https://doi.org/10.1086/150884

    Article  ADS  Google Scholar 

  6. Madore, J.: Commun. Math. Phys. 30(4), 335 (1973). https://doi.org/10.1007/BF01645508

    Article  ADS  Google Scholar 

  7. Anile, A.M., Pirronello, V., Il Nuovo C.B: (1971-1996) 48(1), 90 (1978). https://doi.org/10.1007/BF02748651

  8. Prasanna, A.: Phys. Lett. A 257(3), 120 (1999). https://doi.org/10.1016/S0375-9601(99)00313-8

    Article  ADS  MathSciNet  Google Scholar 

  9. Goswami, G., Chakravarty, G.K., Mohanty, S., Prasanna, A.R.: Phys. Rev. D 95, 103509 (2017). https://doi.org/10.1103/PhysRevD.95.103509

    Article  ADS  Google Scholar 

  10. Baym, G., Patil, S.P., Pethick, C.J.: Phys. Rev. D 96, 084033 (2017). https://doi.org/10.1103/PhysRevD.96.084033

    Article  ADS  MathSciNet  Google Scholar 

  11. Bondi, H., van der Burg, M.G.J., Metzner, A.W.K.: Proc. R. Soc. London A269, 21 (1962)

    ADS  Google Scholar 

  12. Sachs, R.: Proc. Roy. Soc. London A270, 103 (1962)

    ADS  Google Scholar 

  13. Winicour, J.: Living Rev. Relativ. 8, 10 (2005)

    Article  ADS  Google Scholar 

  14. Bishop, N.T., Rezzolla, L.: Living Rev. Relativ. 19, 1 (2016). https://doi.org/10.1007/s41114-016-0001-9

    Article  ADS  Google Scholar 

  15. Winicour, J.: J. Math. Phys. 24, 1193 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  16. Bishop, N.T., Gómez, R., Lehner, L., Winicour, J.: Phys. Rev. D 54, 6153 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  17. Isaacson, R., Welling, S.J., Winicour, J.: J. Math. Phys. 26(5), 2859 (1985). https://doi.org/10.1063/1.526712

    Article  ADS  MathSciNet  Google Scholar 

  18. Bishop, N.T.: Class. Quantum Grav. 22(12), 2393 (2005). https://doi.org/10.1088/0264-9381/22/12/006

    Article  ADS  Google Scholar 

  19. Bishop, N.T.: Phys. Rev. D 93, 044025 (2016). https://doi.org/10.1103/PhysRevD.93.044025

    Article  ADS  MathSciNet  Google Scholar 

  20. Ashtekar, A., Bonga, B., Kesavan, A.: Phys. Rev. D 92, 044011 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  21. Ashtekar, A., Bonga, B., Kesavan, A.: Phys. Rev. D 92, 10432 (2015)

    Google Scholar 

  22. Conklin, R.S., Holdom, B., Ren, J.: Phys. Rev. D 98, 044021 (2018). https://doi.org/10.1103/PhysRevD.98.044021

    Article  ADS  Google Scholar 

  23. Konoplya, R.A., Stuchlík, Z., Zhidenko, A.: Phys. Rev. D 99, 024007 (2019). https://doi.org/10.1103/PhysRevD.99.024007

    Article  ADS  MathSciNet  Google Scholar 

  24. Newman, E.T., Penrose, R.: J. Math. Phys. 7(5), 863 (1966). https://doi.org/10.1063/1.1931221

    Article  ADS  Google Scholar 

  25. Gómez, R., Lehner, L., Papadopoulos, P., Winicour, J.: Class. Quantum Grav. 14(4), 977 (1997)

    Article  ADS  Google Scholar 

  26. Isaacson, R., Welling, J., Winicour, J.: J. Math. Phys. 24, 1824 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  27. van der Walt, P.J., Bishop, N.T.: Phys. Rev. D 82, 084001 (2010). https://doi.org/10.1103/PhysRevD.82.084001

    Article  ADS  Google Scholar 

  28. Bishop, N.T., Gómez, R., Lehner, L., Maharaj, M., Winicour, J.: Phys. Rev. D 56, 6298 (1997). https://doi.org/10.1103/PhysRevD.56.6298

    Article  ADS  MathSciNet  Google Scholar 

  29. Reisswig, C., Bishop, N.T., Lai, C.W., Thornburg, J., Szilagyi, B.: Class. Quantum Grav. 24, 327 (2007). https://doi.org/10.1088/0264-9381/24/12/S21

    Article  ADS  Google Scholar 

  30. Bishop, N.T., Pollney, D., Reisswig, C.: Class. Quantum Grav. 28, 155019 (2011)

    Article  ADS  Google Scholar 

  31. Bishop, N.T., Kubeka, A.S.: Phys. Rev. D 80, 064011 (2009). https://doi.org/10.1103/PhysRevD.80.064011

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation, South Africa, under grant numbers 118519 and 114815.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel T. Bishop.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

A Description of computer algebra scripts

A Description of computer algebra scripts

The computer algebra scripts used in this paper are written in Maple in plain text format, and are available as Supplementary Material. Note that the output files may be viewed using a plain text editor provided line-wrapping is switched off.

The scripts gamma.out, initialize.map, lin.map, ProcsRules.map are not used directly, but are called by the other scripts described below. gamma.out contains formulas for the Bondi-Sachs metric, its inverse and the metric connection coefficients. lin.map constructs the Einstein equations linearized about a given background. ProcsRules.map contains various procedures and rules that are used by other scripts.

The script initialize.map initializes various arrays etc., and sets the density profile of the matter as given in Eq. (4); other density profiles tested were

$$\begin{aligned} \rho&=\rho _c\left( \frac{1}{r^3}-\frac{r_0}{r^4}\right) \left( \frac{(r_0+\varDelta )^2}{r^5}-\frac{1}{r^3}\right) ,\qquad \rho =\rho _c\left( \frac{1}{r^4}-\frac{r_0}{r^5}\right) \left( \frac{r_0+\varDelta }{r^4}-\frac{1}{r^3}\right) ,\nonumber \\ \rho&=\rho _c\left( \frac{1}{r^2}-\frac{r_0}{r^3}\right) \left( \frac{(r_0+\varDelta )}{r^5}-\frac{1}{r^4}\right) ,\qquad \rho =\rho _c\left( \frac{1}{r^2}-\frac{r_0}{r^3}\right) \left( \frac{r_0+\varDelta }{r^6}-\frac{1}{r^5}\right) . \end{aligned}$$
(28)

The script backgroundShell.map constructs the background (spherically symmetric) solution for the given density profile; it also checks that the metric functions are sufficiently smooth at the interface \(r=r_0\), and that the solution satisfies all 10 Einstein equations. The output is in backgroundShell.out

The script paperEqs.map, with output in paperEqs.out, generates the formulas given in Eqs. (12), (14) and (16); note that some manual simplifications have been applied to the formulas generated by the computer algebra.

The script shell.map uses the divergence-free condition on the energy-momentum tensor, \(\nabla _a T_{bc}g^{ac}=0\), to determine the fluid properties, i.e. density and velocity perturbations. It then constructs the metric in \(r<r_0,r_0<r<r_0+\varDelta \) and \(r>r_0\), and checks that the solutions obtained satisfy all 10 Einstein equations. Finally, it constructs and solves the continuity conditions at \(r=r_0,r=r_0+\varDelta \), and then evaluates the gravitational wave strain. The output is in shell.out.

The script shellCinI_0.map is the same as shell.map except that: on line 399 CinI is hard-coded to be 0, and some output has been suppressed. The output is in shellCinI_0.out.

The script regular_0_IncomingGW.map is an adaptation of the script regular_0.map used in [30] to calculate the GWs emitted by an equal mass binary. The adaptations are: (a) an incoming wave, as a free parameter, is included; and (b) the coefficient names have been changed to be consistent with those used in shell.map. The output is in regular_0_IncomingGW.out.

The file formulas.pdf is in pdf format and contains the Maple output for

$$\begin{aligned}&\beta ^{[B]},W^{[B]}, \beta ^{[2,2,I]},J^{[2,2,I]},U^{[2,2,I]},W^{[2,2,I]},C_{1I},C_{5I}, \rho ^{[2,2]},V^{[2,2]}_0,V^{[2,2]}_1,V^{[2,2]}_{ang} \\&\beta ^{[2,2,S]},J^{[2,2,S]},U^{[2,2,S]},W^{[2,2,S]},C_{1S},C_{5S}, \beta ^{[2,2,E]},J^{[2,2,E]},U^{[2,2,E]},\\&\quad W^{[2,2,E]},C_{1E},C_{5E}, \\&{{\mathcal {N}}}^{[2,2]},b_{0E},C_{3E},C_{4E},C_{inS}, b_{0S},C_{3S},C_{4S},C_{inI}. \end{aligned}$$

The formulas for the above are generated during the execution of shell.map and written to the file formulas.out.

The file Eqs.pdf is in pdf format and includes the content of paperEqs.out with annotations, together with the formulas for \(\beta ^{[B]},W^{[B]}\) within the matter shell extracted from backgroundShell.out.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bishop, N.T., van der Walt, P.J. & Naidoo, M. Effect of a low density dust shell on the propagation of gravitational waves. Gen Relativ Gravit 52, 92 (2020). https://doi.org/10.1007/s10714-020-02740-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-020-02740-9

Keywords

Navigation