Skip to main content
Log in

Semi-tetrad decomposition of spacetime with conformal symmetry

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study the kinematical and dynamical properties of spacetimes that admit a conformal Killing vector. A 1 + 1 + 2 decomposition of the spacetime is performed using the fluid 4-velocity and a preferred spatial direction. This provides new insights into the behaviour of the acceleration, expansion, shear and vorticity scalars. The energy momentum tensor for an anisotropic fluid with no sheet components is considered and decomposed using the semi-tetrad covariant approach. This makes it possible to generate a set of constraint equations in the new geometrical variables. All the geometrical and thermodynamical quantities are written in terms of the 1 + 1 + 2 decomposition variables. We also find the constraints that must be satisfied by the thermodynamical variables when conformal symmetry exists in a perfect fluid. Noteworthily we show that the conformal factor satisfies a damped wave equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Newman, E., Penrose, R.: J. Math. Phys. 3, 566 (1962)

    Article  ADS  Google Scholar 

  2. Ehlers, J.: Akad. Wiss. Lit. Mainz, Abhandl. Math. Nat. Kl. 11, 793 (1961). [Translation: J. Ehlers, Gen. Relativ. Gravit. 25, 1225 (1993)]

  3. Ellis, G.F.R.: Relativistic cosmology. In: Proceedings of the International School of Physics “Enrico Fermi”, Course 47: General Relativity and Cosmology. Academic Press, New York (1971)

  4. Clarkson, C.A., Barrett, R.K.: Class. Quantum Gravity 20, 3855 (2003)

    Article  ADS  Google Scholar 

  5. Dyer, C.C., McVittie, G.C., Oattes, L.M.: Gen. Relativ. Gravit. 19, 887 (1987)

    Article  ADS  Google Scholar 

  6. Herrera, L., Jiménez, J., Leal, L., Ponce de León, J.: J. Math. Phys. 25, 3274 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  7. Maharaj, S.D., Leach, P.G.L., Maartens, R.: Gen. Relativ. Gravit. 23, 261 (1991)

    Article  ADS  Google Scholar 

  8. Herrera, L., Ponce de León, J.: J. Math. Phys. 26, 2847 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  9. Choquet-Bruhat, Y., Dewitt-Morette, C., Dillard-Bleick, M.: Analysis, Manifolds and Physics. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  10. Maartens, R., Maharaj, S.D.: Class. Quantum Gravity 3, 1005 (1986)

    Article  ADS  Google Scholar 

  11. Moopanar, S., Maharaj, S.D.: Int. J. Theor. Phys. 49, 1878 (2010)

    Article  Google Scholar 

  12. Manjonjo, A.M., Maharaj, S.D., Moopanar, S.: Class. Quantum Gravity 35, 045015 (2018)

    Article  ADS  Google Scholar 

  13. Moopanar, S., Maharaj, S.D.: J. Eng. Math. 82, 125 (2013)

    Article  Google Scholar 

  14. Singh, S., Goswami, R., Maharaj, S.D.: J. Math. Phys. 60, 052503 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  15. Maartens, R., Mason, D.P., Tsamparlis, M.: J. Math. Phys. 27, 2987 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  16. Stephani, H., Kramer, D., MacCaallum, M.A.H., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  17. Ellis, G.F.R.: J. Math. Phys. 8, 1171 (1967)

    Article  ADS  Google Scholar 

  18. Stewart, J.M., Ellis, G.F.R.: J. Math. Phys. 9, 1072 (1968)

    Article  ADS  Google Scholar 

  19. Ellis, G.F.R., MacCallum, M.A.H.: Commun. Math. Phys. 12, 108 (1969)

    Article  ADS  Google Scholar 

  20. Krasinski, A., Behr, C.G., Schücking, E., Estabrook, F.B., Wahlquist, H.D., Ellis, G.F.R., Jantzen, R., Kundt, W.: Gen. Relativ. Gravit. 35, 475 (2003)

    Article  ADS  Google Scholar 

  21. Bianchi, L.: Gen. Relativ. Gravit. 33, 2157 (2001)

    Article  Google Scholar 

  22. Ellis, G.F.R.: Gen. Relativ. Gravit. 59, 581 (2009)

    Article  ADS  Google Scholar 

  23. Betschart, G., Clarkson, C.: Class. Quantum Gravity 21, 5587 (2004)

    Article  ADS  Google Scholar 

  24. Nzioki, A.M., Carloni, S., Goswami, R., Dunsby, P.K.S.: Phys. Rev. D 81, 084028 (2010)

    Article  ADS  Google Scholar 

  25. de Swardt, B., Dunsby, P.K.S., Clarkson, C.: arXiv:1002.2041 [gr-qc] (2010)

  26. Singh, S., Ellis, G.F.R., Goswami, R., Maharaj, S.D.: Phys. Rev. D 96, 064049 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  27. Clarkson, C.: Phys. Rev. D 76, 104034 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  28. Coley, A.A., Tupper, B.O.J.: Class. Quantum Gravity 7, 1961 (1990)

    Article  ADS  Google Scholar 

  29. Ellis, G.F.R., van Elst, H.: Cosmological models. In: Proceedings of the NATO Advanced Study Institute on Theoretical and Observational Cosmology: Cargése Lectures. Kluwer Academic, Boston (1998)

  30. Coley, A.A., Tupper, B.O.J.: Class. Quantum Gravity 7, 2195 (1990)

    Article  ADS  Google Scholar 

  31. Coley, A.A., Tupper, B.O.J.: Gen. Relativ. Gravit. 22, 241 (1990)

    Article  ADS  Google Scholar 

  32. Coley, A.A., Tupper, B.O.J.: Class. Quantum Gravity 11, 2553 (1994)

    Article  ADS  Google Scholar 

  33. Goswami, R., Ellis, G.F.R.: Gen. Relativ. Gravit. 43, 2157 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

CH is supported by the DST-NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS) and the University of KwaZulu-Natal. Opinions expressed and conclusions arrived at are those of the author and are not necessarily to be attributed to the CoE-MaSS. RG is supported by the National Research Foundation (NRF), South Africa, and the University of KwaZulu-Natal. SDM acknowledges that this work was based on research supported by the South African Research Chair Initiative of the Department of Science and Technology and the National Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil D. Maharaj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Additional 1 + 3 equations and definitions

We write down the definitions of important components including the kinematical, Weyl and matter quantities in the 1 + 3 formalism.

$$\begin{aligned} \varepsilon _{abc}= & {} \sqrt{|\text {det } g|}\delta ^0{}_{[a} \delta ^1{}_{b}\delta ^2{}_{c}\delta ^3{}_{d]} u^{d}, \end{aligned}$$
(A1)
$$\begin{aligned} \varepsilon _{abc}\varepsilon ^{def}= & {} 3! h^d{}_{\left[ a \right. } h^e{}_{b} h^f{}_{\left. c \right] }, \nonumber \\ \varepsilon _{abc}\varepsilon ^{dec}= & {} 2 h^d{}_{\left[ a \right. } h^e{}_{\left. b\right] }, \nonumber \\ A_{b}= & {} \dot{u_{b}}, \end{aligned}$$
(A2)
$$\begin{aligned} \Theta= & {} D_{a} u^{a}, \end{aligned}$$
(A3)
$$\begin{aligned} \sigma _{ab}= & {} \left( h^{c}{}_{(a} h^{d}{}_{b)} - \frac{1}{3}h_{ab} h^{cd}\right) D_{c} u_{d}, \end{aligned}$$
(A4)
$$\begin{aligned} \omega ^{a}= & {} \varepsilon ^{abc} D_{b} u_{c}, \end{aligned}$$
(A5)
$$\begin{aligned} E_{ab}= & {} C_{abcd} u^{c} u^{d} = E_{<ab>}, \end{aligned}$$
(A6)
$$\begin{aligned} H_{ab}= & {} \frac{1}{2} \varepsilon _{ade} C^{de}{}_{bc} u^{c} = H_{<ab>}, \end{aligned}$$
(A7)
$$\begin{aligned} \mu= & {} T_{ab} u^{a} u^{b}, \end{aligned}$$
(A8)
$$\begin{aligned} p= & {} \frac{1}{3} h_{ab} T^{ab}, \end{aligned}$$
(A9)
$$\begin{aligned} q_{a}= & {} q_{<a>} = - h^{c}{}_{a} T_{cd} u^{d}. \end{aligned}$$
(A10)

Angle brackets denote orthogonal projections of covariant time derivatives along \({u^{a}}\) as well as represent the projected, symmetric and trace-free part of tensors as follows

$$\begin{aligned} v_{<a>}= & {} h^{b}{}_{a}{\dot{V}}_{b}, \end{aligned}$$
(A11)
$$\begin{aligned} Z_{<ab>}= & {} \left( h^{c}{}_{(a} h^{d}{}_{b)} - \frac{1}{3}h_{ab} h^{cd}\right) Z_{cd}. \end{aligned}$$
(A12)

Appendix B: Additional 1 + 1 + 2 equations and definitions

We write down the definitions of important components in the 1 + 1 + 2 formalism.

$$\begin{aligned} \varepsilon _{ab}\equiv & {} \varepsilon _{abc} e^{c} = \sqrt{|\text {det } g|}\delta ^0{}_{[a} \delta ^1{}_{b}\delta ^2{}_{c}\delta ^3{}_{d]} e^{c} u^{d}, \end{aligned}$$
(B1)
$$\begin{aligned} E_{ab}= & {} \mathcal {E} \left( e_{a} e_{b} - \frac{1}{2} N_{ab}\right) + 2\mathcal {E}_{(a} e_{b)} + \mathcal {E}_{ab}, \end{aligned}$$
(B2)
$$\begin{aligned} H_{ab}= & {} \mathcal {H} \left( e_{a} e_{b} - \frac{1}{2} N_{ab}\right) + 2\mathcal {H}_{(a} e_{b)} + \mathcal {H}_{ab}, \end{aligned}$$
(B3)
$$\begin{aligned} \sigma ^{2}= & {} \frac{1}{2}\sigma _{ab}\sigma ^{ab} = \frac{3}{4}\Sigma ^{2} + \Sigma _{a}\Sigma ^{a} + \frac{1}{2}\Sigma _{ab}\Sigma ^{ab}, \end{aligned}$$
(B4)
$$\begin{aligned} a_{a}\equiv & {} e^{c} D_{c} e_{a} = {\hat{e}}_{a}, \end{aligned}$$
(B5)
$$\begin{aligned} \phi\equiv & {} \delta _{a} e^{a}, \end{aligned}$$
(B6)
$$\begin{aligned} \varsigma\equiv & {} \frac{1}{2}\varepsilon ^{ab}\delta _{a} e_{b}, \end{aligned}$$
(B7)
$$\begin{aligned} \zeta _{ab}\equiv & {} \delta _{\{a} e_{b\}}. \end{aligned}$$
(B8)

The irreducible set of geometric variables

$$\begin{aligned}&\left\{ \Theta , \mathcal {A}, \Omega , \Sigma , \mathcal {E}, \mathcal {H}, \phi , \varsigma , \mathcal {A}_{a}, \Omega _{a}, \Sigma _{a}, \varphi _{a}, \right. \nonumber \\&\quad \left. a_{a}, \mathcal {E}_{a}, \mathcal {H}_{a}, \Sigma _{ab}, \zeta _{ab}, \mathcal {E}_{ab}, \mathcal {H}_{ab}\right\} , \end{aligned}$$
(B9)

together with the irreducible set of thermodynamic variables

$$\begin{aligned} \{\mu , p, Q, \Pi , Q_{a}, \Pi _{a}, \Pi _{ab}\}, \end{aligned}$$
(B10)

make up the key variables in the 1 + 1 + 2 formalism of first order gravity for a given equation of state.

Any spacetime 3-vector \({\Phi ^{a}}\) can be irreducibly split into \({\chi }\), a scalar component along \({e^{a}}\), and a 2-vector \({\chi ^{a}}\), which is a sheet component orthogonal to \({e^{a}}\), as follows

$$\begin{aligned}&\Phi ^{a} = \chi e^{a} + \chi ^{a} \quad \text {where} \quad \chi \equiv \Phi _{a} e^{a} \quad \nonumber \\&\quad \text {and} \quad \chi ^{a} \equiv N^{ab} \Phi _{b} \equiv \Phi ^{{\bar{a}}}, \end{aligned}$$
(B11)

where the bar on a particular index denotes projection with \({N_{ab}}\) on that index such that the vector or tensor lies on the sheet. Similarly we can split a projected, symmetric, trace-free tensor \({\Phi _{ab}}\) into scalar, 2-vector and 2-tensor parts as follows

$$\begin{aligned} \Phi _{ab} = \Phi _{<ab>} = \chi \left( e_{a} e_{b} - \frac{1}{2} N_{ab}\right) + 2\chi _{(a} e_{b)} + \chi _{ab}, \end{aligned}$$
(B12)

where the components

$$\begin{aligned} \chi\equiv & {} e^{a} e^{b} \Phi _{ab} = -N^{ab}\Phi _{ab}, \nonumber \\ \chi _{a}\equiv & {} N_{a}{}^{b} e^{c}\Phi _{bc}, \nonumber \\ \chi _{ab}\equiv & {} \chi _{\{ab\}} = \left( N_{(a}{}^{c} N_{b)}{}^{d} - \frac{1}{2} N_{ab} N^{cd}\right) \Phi _{cd}, \end{aligned}$$
(B13)

are defined. The curly brackets denote the part of the tensor that is projected, symmetric and trace-free, with respect to \({e^{a}}\).

The Ricci identities for \({e^{a}}\) are given by

$$\begin{aligned} R_{abc} \equiv 2\nabla _{[a}\nabla _{b]} e_{c} - R_{abcd} e^{d} = 0, \end{aligned}$$
(B14)

where \({R_{abcd}}\) is the Riemann curvature tensor. Splitting this rank three tensor using \({u^{a}}\) and \({e^{a}}\), we can obtain the propagation and evolution equations for the covariant parts of the derivative of \({e^{a}}\). We note that not all information needed to determine the complete set of 1 + 1 + 2 equations is contained in \({R_{abc}}\). Hence, a 1 + 1 + 2 decomposition of the standard 1 + 3 equations is performed and we can write down the energy and momentum conservation equations given by

$$\begin{aligned} {\dot{\mu }} + {\hat{Q}}= & {} -\Theta \left( \mu + p\right) - \left( \phi + 2\mathcal {A}\right) Q \nonumber \\&-\, \frac{3}{2}\Sigma \Pi + \left( a_{a} - 2\mathcal {A}_{a}\right) Q^{a} \nonumber \\&-\, \delta _{a} Q^{a} - 2\Sigma _{a}\Pi ^{a} - \Sigma _{ab}\Pi ^{ab}, \end{aligned}$$
(B15)
$$\begin{aligned} {\dot{Q}} + {\hat{p}} + {\hat{\Pi }}= & {} -\delta _{a}\Pi ^{a} - \left( \frac{3}{2}\phi + \mathcal {A}\right) \Pi \nonumber \\&-\, \left( \frac{4}{3}\Theta + \Sigma \right) Q - \left( \mu + p\right) \mathcal {A} \nonumber \\&+\, \left( \varphi _{a} - \Sigma _{a} + \varepsilon _{ab}\Omega ^{b}\right) Q^{a} \nonumber \\&+\, \left( 2 a_{a} - \mathcal {A}_{a}\right) \Pi ^{a}+ \zeta _{ab}\Pi ^{ab}, \end{aligned}$$
(B16)
$$\begin{aligned} {\dot{Q}}_{{\bar{a}}} + {\hat{\Pi }}_{{\bar{a}}}= & {} -\delta _{a}p + \frac{1}{2}\delta _{a}\Pi - \delta ^{b}\Pi _{ab} \nonumber \\&-\, \frac{3}{2}\Pi a_{a} - Q\left( \varphi _{a}+ \Sigma _{a} + \varepsilon _{ab}\Omega ^{b}\right) \nonumber \\&-\, \left( \frac{4}{3}\Theta - \frac{1}{2}\Sigma \right) Q_{a} + \Omega \varepsilon _{ab} Q^{b} \nonumber \\&-\, \left( \frac{3}{2}\phi + \mathcal {A}\right) \Pi _{a} + \varsigma \varepsilon _{ab}\Pi ^{b} \nonumber \\&-\, \left( \mu + p - \frac{1}{2}\Pi \right) \mathcal {A}_{a} - \Sigma _{ab} Q^{b} \nonumber \\&-\,\zeta _{ab}\Pi ^{b} + \Pi _{ab}\left( a^{b} - \mathcal {A}^{b}\right) . \end{aligned}$$
(B17)

We write down the 1 + 1 + 2 double derivative expression for a scalar \({\kappa }\) as follows

$$\begin{aligned} \nabla ^{a} \nabla ^{b}\kappa= & {} -{\dot{\kappa }}\left\{ \frac{1}{3}\Theta \left( N^{ab} + e^{a} e^{b}\right) \right. \nonumber \\&\left. +\, \Sigma \left( e^{a} e^{b} - \frac{1}{2} N^{ab}\right) + 2\Sigma ^{(a} e^{b)} \right. \nonumber \\&+\, \Sigma ^{ab} \left. + e^{a}\varepsilon ^{bc}\Omega _{c} - e^{b}\varepsilon ^{ac}\Omega _{c} + \varepsilon ^{ab}\Omega \right\} \nonumber \\&+\, u^{b}\left\{ \frac{1}{3}\Theta \left( {\hat{\kappa }} e^{a} + \delta ^{a}\kappa \right) \right. \nonumber \\&+\, \left[ \Sigma \left( e^{a} e^{c} - \frac{1}{2} N^{ac}\right) + 2\Sigma ^{(a} e^{c)} +\, \Sigma ^{ac}\right] \left( {\hat{\kappa }} e_{c} + \delta _{c}\kappa \right) \nonumber \\&+ \left[ e^{a} \varepsilon ^{cd}\Omega _{d} - e^{c}\varepsilon ^{ad}\Omega _{d} + \varepsilon ^{ac}\Omega \right] \left( {\hat{\kappa }} e_{c} + \delta _{c}\kappa \right) \nonumber \\&\left. +\, u^{a}\ddot{\kappa } - \left( \hat{{\dot{\kappa }}} e^{a} + \delta ^{a}{\dot{\kappa }}\right) \right\} - u^{a}\left\{ \left( N^{cb} + e^{c} e^{b}\right) \left( {\hat{\kappa }} e_{c} + \delta _{c}\kappa \right) \right. \nonumber \\&+\, u^{b}\left( \mathcal {A} e^{c} + \mathcal {A}^{c}\right) \left( {\hat{\kappa }} e_{c} + \delta _{c}\kappa \right) \left. -{\dot{\kappa }}\left( \mathcal {A} e^{b} + \mathcal {A}^{b}\right) \right\} \nonumber \\&+\frac{1}{3}\left\{ \hat{{\hat{\kappa }}} + \phi {\hat{\kappa }} -\, \delta ^{c}\kappa a_{c} + \delta ^{c}\delta _{c}\kappa \right\} \left( N^{ab} + e^{a} e^{b}\right) \nonumber \\&+\, \frac{1}{3}\left\{ 2\hat{{\hat{\kappa }}} - \phi {\hat{\kappa }} - 2\delta ^{c}\kappa a_{c} - \delta ^{c}\delta _{c}\kappa \right\} \left( e^{a} e^{b} - \frac{1}{2} N^{ab}\right) \nonumber \\&+\, \left\{ 2\delta ^{(a}{\hat{\kappa }} - \left( \Sigma ^{(a} + \Omega _{c}\varepsilon ^{c(a}\right) {\dot{\kappa }} \right. \nonumber \\&\left. -\,\phi \delta ^{(a}\kappa + 2\delta _{c}\kappa \left( \varsigma \varepsilon ^{c(a} - \zeta ^{c(a}\right) \right\} e^{b)} \nonumber \\&+\, {\hat{\kappa }}\zeta ^{ab} + \delta ^{\{a}\delta ^{b\}} + \frac{1}{2}\left( e^{a}\varepsilon ^{bc} - e^{b}\varepsilon ^{ac}+ e^{c}\varepsilon ^{ab}\right) \nonumber \\&\left\{ \left( 2\varsigma {\hat{\kappa }} + \varepsilon _{mn}\delta ^{m}\delta ^{n}\kappa \right) e_{c} \right. \nonumber \\&\left. +\, \varsigma \delta _{c}\kappa + \varepsilon _{cm}\left( \Sigma ^{m}{\dot{\kappa }} - \varepsilon ^{mc}\Omega _{c}{\dot{\kappa }} \right. \left. + \varepsilon ^{mc}\varsigma \delta _{c}\kappa \right) \right\} . \end{aligned}$$
(B18)

We mention that in general the dot, hat and delta derivatives do not commute. The commutation relations for any scalar \({\kappa }\) are

$$\begin{aligned} \hat{{\dot{\kappa }}} - \dot{{\hat{\kappa }}}= & {} -\mathcal {A}{\dot{\kappa }} + \left( \frac{1}{3}\Theta + \Sigma \right) {\hat{\kappa }} \nonumber \\&+\, \left( \Sigma _{a} + \varepsilon _{ab}\Omega ^{b} - \varphi _{a} \right) \delta ^{a}\kappa , \end{aligned}$$
(B19)
$$\begin{aligned} \delta _{a}{\dot{\kappa }} - \left( \delta _{a}\kappa \right) ^{\cdot }_{\perp }= & {} -\mathcal {A}_{a}{\dot{\kappa }} + \left( \varphi _{a} + \Sigma _{a} -\varepsilon _{ab}\Omega ^{b} \right) {\hat{\kappa }}\nonumber \\&+\, \left( \frac{1}{3}\Theta - \frac{1}{2}\Sigma \right) \delta _{a}\kappa + \left( \Sigma _{ab} + \Omega \varepsilon _{ab}\right) \delta ^{b}\kappa , \end{aligned}$$
(B20)
$$\begin{aligned} \delta _{a}{\hat{\kappa }} - \left( \widehat{\delta _{a}\kappa }\right) _{\perp }= & {} -2\varepsilon _{ab}\Omega ^{b}{\dot{\kappa }} + a_{a}{\hat{\kappa }} \nonumber \\&+\, \frac{1}{2}\phi \delta _{a}\kappa + \left( \zeta _{ab} + \varsigma \varepsilon _{ab}\right) \delta ^{b}\kappa , \end{aligned}$$
(B21)
$$\begin{aligned} \delta _{[a}\delta _{b]}\kappa= & {} \varepsilon _{ab}\left( \Omega {\dot{\kappa }} - \varphi {\hat{\kappa }}\right) , \end{aligned}$$
(B22)

where \({\perp }\) denotes projection onto the sheet.

Appendix C: Extended calculations

In the 1 + 1 + 2 formalism, the Herrera et al. [6] expression for the Lie derivative along a CKV \({\xi ^{a}}\) of Einstein’s field Eq. (74) equates to

$$\begin{aligned} \mathcal {L}_{\varvec{\xi }} G_{ab}= & {} 2\left[ -\Theta {\dot{\Psi }} - \ddot{\Psi } + {\hat{\Psi }}\left( \mathcal {A} + \phi \right) + \hat{{\hat{\Psi }}} - \delta ^{c}\delta _{c}\Psi \right] \left[ N_{ab} - u_{a} u_{b} + e_{a} e_{b}\right] \nonumber \\&-\, 2 \left[ -{\dot{\Psi }}\left\{ \frac{1}{3}\Theta \left( N_{ab} + e_{a} e_{b}\right) \right. \right. +\, \Sigma \left( e_{a} e_{b} - \frac{1}{2} N_{ab}\right) + 2\Sigma _{(a} e_{b)}\nonumber \\&+\, \Sigma _{ab} + e_{a}\varepsilon _{bc}\Omega ^{c} \left. - e_{b}\varepsilon _{ac}\Omega ^{c} + \varepsilon _{ab}\Omega \right\} +\, u_{b}\left\{ \frac{1}{3}\Theta \left( {\hat{\Psi }} e_{a} + \delta _{a}\Psi \right) \right. \nonumber \\&+\, \left[ \Sigma \left( e_{a} e_{c} - \frac{1}{2} N_{ac}\right) + 2\Sigma _{(a} e_{c)} + \Sigma _{ac}\right] \left( {\hat{\Psi }} e^{c} + \delta ^{c}\Psi \right) \nonumber \\&+ \left[ e_{a} \varepsilon _{cd}\Omega ^{d}- \,e_{c}\varepsilon _{ad}\Omega ^{d} + \varepsilon _{ac}\Omega \right] \left( {\hat{\Psi }} e^{c} + \delta ^{c}\Psi \right) \nonumber \\&\left. + \,u_{a}\ddot{\Psi }- \left( \hat{{\dot{\Psi }}} e_{a} + \delta _{a}{\dot{\Psi }}\right) \right\} - u_{a}\left\{ \left( N_{cb} + e_{c} e_{b}\right) \left( {\hat{\Psi }} e^{c} + \delta ^{c}\Psi \right) \right. \nonumber \\&+\, u_{b}\left( \mathcal {A} e_{c} + \mathcal {A}_{c}\right) \left( {\hat{\Psi }} e^{c} + \delta ^{c}\Psi \right) - \left. {\dot{\Psi }}\left( \mathcal {A} e_{b} + \mathcal {A}_{b}\right) \right\} \nonumber \\&+ \frac{1}{3}\left\{ \hat{{\hat{\Psi }}} + \phi {\hat{\Psi }} -\, \delta ^{c}\Psi a_{c} + \delta ^{c}\delta _{c}\Psi \right\} \left( N_{ab} + e_{a} e_{b}\right) \nonumber \\&+\, \frac{1}{3}\left\{ 2\hat{{\hat{\Psi }}} - \phi {\hat{\Psi }} - 2\delta ^{c}\Psi a_{c} - \,\delta ^{c}\delta _{c}\Psi \right\} \left( e_{a} e_{b} - \frac{1}{2} N_{ab}\right) \nonumber \\&+\, \left\{ 2\delta _{(a}{\hat{\Psi }} - \left( \Sigma _{(a} + \Omega ^{c}\varepsilon _{c(a}\right) {\dot{\Psi }} \right. \left. -\phi \delta _{(a}\Psi + 2\delta ^{c}\Psi \left( \varsigma \varepsilon _{c(a} - \zeta _{c(a}\right) \right\} e_{b)}\nonumber \\&+\, {\hat{\Psi }}\zeta _{ab} + \delta _{\{a}\delta _{b\}} + \frac{1}{2}\left( e_{a}\varepsilon _{bc} - e_{b}\varepsilon _{ac} + e_{c}\varepsilon _{ab}\right) \left\{ \left( 2\varsigma {\hat{\Psi }} + \varepsilon _{mn}\delta ^{m}\delta ^{n}\Psi \right) e^{c} \right. \nonumber \\&+\, \varsigma \delta ^{c}\Psi + \varepsilon ^{cm}\left( \Sigma _{m}{\dot{\Psi }} - \varepsilon _{mc}\Omega ^{c}{\dot{\Psi }} \left. \left. + \varepsilon _{mc}\varsigma \delta ^{c}\Psi \right) \right\} \right] . \end{aligned}$$
(C1)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansraj, C., Goswami, R. & Maharaj, S.D. Semi-tetrad decomposition of spacetime with conformal symmetry. Gen Relativ Gravit 52, 63 (2020). https://doi.org/10.1007/s10714-020-02717-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-020-02717-8

Keywords

Navigation