Skip to main content
Log in

On constrained analysis and diffeomorphism invariance of generalised Proca theories

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We consider a whole class of theories, each of which describes dynamics of a vector field coupled to any external background field. Furthermore, each of these theories is diffeomorphism invariance, has time–time and time-space components of Hessian of the vector sector equal zero but with space–space part being non-degenerate, and the vector sector is free from Ostrogradski instability. By using the Faddeev–Jackiw constrained analysis, we derive the conditions that theories in this class have to satisfy in order for the vector sector to have \(d-1\) propagating degrees of freedom in \(d\)-dimensional spacetime. Most of these conditions are trivialised due to diffeomorphism invariance requirements. This leaves only a condition that a complicated combination of terms should not be trivially zero. Being an inequality, this condition is naturally easy to be fulfilled. We verify our result by using the Dirac constrained analysis to obtain the same result. Furthermore, we have also made a small remark on how the absence of diffeomorphism invariance affects the form of Faddeev–Jackiw brackets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Will, C.M.: The confrontation between general relativity and experiment. Living Rev. Rel. 17, 4 (2014). arXiv:1403.7377 [gr-qc]

    Article  Google Scholar 

  2. Supernova Cosmology Project Collaboration, Perlmutter, S., et al.: Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys. J.517 (1999), 565–586. arXiv:astro-ph/9812133 [astro-ph]

  3. Supernova Search Team Collaboration, Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J.116 (1998), 1009–1038. arXiv:astro-ph/9805201 [astro-ph]

  4. Ostrogradsky, M.: Mémoires sur les équations différentielles, relatives au problème des isopérimètres. Mem. Acad. St. Petersbg. 6(4), 385–517 (1850)

    Google Scholar 

  5. Nicolis, A., Rattazzi, R., Trincherini, E.: The Galileon as a local modification of gravity. Phys. Rev. D 79, 064036 (2009). arXiv:0811.2197 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  6. Horndeski, G.W.: Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys. 10, 363–384 (1974)

    Article  MathSciNet  Google Scholar 

  7. Deffayet, C., Esposito-Farese, G., Vikman, A.: Covariant Galileon. Phys. Rev. D 79, 084003 (2009). arXiv:0901.1314 [hep-th]

    Article  ADS  Google Scholar 

  8. Deffayet, C., Deser, S., Esposito-Farese, G.: Generalized Galileons: all scalar models whose curved background extensions maintain second-order field equations and stress-tensors. Phys. Rev. D 80, 064015 (2009). arXiv:0906.1967 [gr-qc]

    Article  ADS  Google Scholar 

  9. Deffayet, C., Gao, X., Steer, D.A., Zahariade, G.: From k-essence to generalised Galileons. Phys. Rev. D 84, 064039 (2011). arXiv:1103.3260 [hep-th]

    Article  ADS  Google Scholar 

  10. Zumalacárregui, M., García-Bellido, J.: Transforming gravity: from derivative couplings to matter to second-order scalar-tensor theories beyond the Horndeski Lagrangian. Phys. Rev. D 89, 064046 (2014). arXiv:1308.4685 [gr-qc]

    Article  ADS  Google Scholar 

  11. Gleyzes, J., Langlois, D., Piazza, F., Vernizzi, F.: Healthy theories beyond Horndeski. Phys. Rev. Lett. 114(21), 211101 (2015). arXiv:1404.6495 [hep-th]

    Article  ADS  Google Scholar 

  12. Langlois, D., Noui, K.: Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability. JCAP 1602(02), 034 (2016). arXiv:1510.06930 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  13. Heisenberg, L.: A systematic approach to generalisations of general relativity and their cosmological implications. Phys. Rept. 796, 1–113 (2019). arXiv:1807.01725 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  14. Kobayashi, T.: Horndeski theory and beyond: a review. Rept. Prog. Phys. 82(8), 086901 (2019). arXiv:1901.07183 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  15. Deffayet, C., Gümrükçüoğlu, A.E., Mukohyama, S., Wang, Y.: A no-go theorem for generalized vector Galileons on flat spacetime. JHEP 04, 082 (2014). arXiv:1312.6690 [hep-th]

    Article  ADS  Google Scholar 

  16. Tasinato, G.: Cosmic acceleration from abelian symmetry breaking. JHEP 04, 067 (2014). arXiv:1402.6450 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  17. Heisenberg, L.: Generalization of the Proca action. JCAP 1405, 015 (2014). arXiv:1402.7026 [hep-th]

    Article  ADS  Google Scholar 

  18. Allys, E., Peter, P., Rodriguez, Y.: Generalized Proca action for an Abelian vector field. JCAP 1602(02), 004 (2016). arXiv:1511.03101 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  19. Jimenez, J Beltran, Heisenberg, L.: Derivative self-interactions for a massive vector field. Phys. Lett. B757, 405–411 (2016). arXiv:1602.03410 [hep-th]

    Article  ADS  Google Scholar 

  20. Allys, E., Almeida, J .P.Beltran, Peter, P., Rodriguez, Y.: On the 4D generalized Proca action for an Abelian vector field. JCAP 1609(09), 026 (2016). arXiv:1605.08355 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  21. Rodriguez, Y., Navarro, A.A.: Scalar and vector Galileons. J. Phys. Conf. Ser. 831(1), 012004 (2017). arXiv:1703.01884 [hep-th]

    Google Scholar 

  22. Heisenberg, L., Kase, R., Tsujikawa, S.: Beyond generalized Proca theories. Phys. Lett. B 760, 617–626 (2016). arXiv:1605.05565 [hep-th]

    Article  ADS  Google Scholar 

  23. Cadavid, A.G., Rodriguez, Y.: A systematic procedure to build the beyond generalized Proca field theory. arXiv:1905.10664 [hep-th]

  24. Beltrán Jiménez, J., de Rham, C., Heisenberg, L.: Generalized Proca and its constraint algebra. arXiv:1906.04805 [hep-th]

  25. Kimura, R., Naruko, A., Yoshida, D.: Extended vector-tensor theories. JCAP 1701(01), 002 (2017). arXiv:1608.07066 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  26. Errasti Díez, V., Gording, B., Méndez-Zavaleta, J.A., Schmidt-May, A.: The complete theory of Maxwell and Proca fields. arXiv:1905.06967 [hep-th]

  27. Errasti Díez, V., Gording, B., Méndez-Zavaleta, J.A., Schmidt-May, A.: The Maxwell–Proca theory: definition and construction. arXiv:1905.06968 [hep-th]

  28. Dirac, P.A.M.: Generalized Hamiltonian dynamics. Can. J. Math. 2, 129–148 (1950)

    Article  MathSciNet  Google Scholar 

  29. Dirac, P.: Lectures on Quantum Mechanics. Belfer Graduate School of Science, Monograph Series. Dover Publications, Berlin (2001)

    Google Scholar 

  30. Anderson, J.L., Bergmann, P.G.: Constraints in covariant field theories. Phys. Rev. 83, 1018–1025 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  31. Faddeev, L.D., Jackiw, R.: Hamiltonian reduction of unconstrained and constrained systems. Phys. Rev. Lett. 60, 1692–1694 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  32. Jackiw, R.: (Constrained) quantization without tears. In: Diverse Topics in Theoretical and Mathematical Physics, pp. 163–175 (1993). arXiv:hep-th/9306075 [hep-th]

  33. Barcelos-Neto, J., Wotzasek, C.: Faddeev–Jackiw quantization and constraints. Int. J. Mod. Phys. A 7, 4981–5004 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  34. Barcelos-Neto, J., Wotzasek, C.: Symplectic quantization of constrained systems. Mod. Phys. Lett. A 7, 1737–1748 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  35. Rodrigues, D.C., Galvão, M., Pinto-Neto, N.: Hamiltonian analysis of general relativity and extended gravity from the iterative Faddeev–Jackiw symplectic approach. Phys. Rev. D 98(10), 104019 (2018). arXiv:1808.06751 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  36. Vytheeswaran, A.S.: Gauge invariances in the Proca model. Int. J. Mod. Phys. A 13, 765–778 (1998). arXiv:hep-th/9701050 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  37. Kim, Y.-W., Park, M.-I., Park, Y.-J., Yoon, S.J.: BRST quantization of the Proca model based on the BFT and the BFV formalism. Int. J. Mod. Phys. A 12, 4217–4239 (1997). arXiv:hep-th/9702002 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  38. Toms, D.J.: Quantization of the minimal and non-minimal vector field in curved space. arXiv:1509.05989 [hep-th]

  39. Buchbinder, I .L., de Paula Netto, T., Shapiro, I .L.: Massive vector field on curved background: nonminimal coupling, quantization, and divergences. Phys. Rev. D95(8), 085009 (2017). arXiv:1703.00526 [hep-th]

    ADS  MathSciNet  Google Scholar 

  40. Ruf, M.S., Steinwachs, C.F.: Renormalization of generalized vector field models in curved spacetime. Phys. Rev. D 98(2), 025009 (2018). arXiv:1806.00485 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  41. Ruf, M.S., Steinwachs, C.F.: Quantum effective action for degenerate vector field theories. Phys. Rev. D 98(8), 085014 (2018). arXiv:1809.04601 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  42. Hull, M., Koyama, K., Tasinato, G.: Covariantized vector Galileons. Phys. Rev. D 93(6), 064012 (2016). arXiv:1510.07029 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to Sheng-Lan Ko for interests, helpful discussions, and various comments on the manuscript. We would also like to thank Lavinia Heisenberg, Yeinzon Rodriguez, and Christian Steinwachs for interests and comments. Furthermore, we thank anonymous referees for helpful comments which improve our manuscript. J.S. is supported by an IF Scholarship from the Institute for Fundamental Study “The Tah Poe Academia Institute”, Naresuan University, and a Research Grant for Graduate Student from the Graduate School, Naresuan University. P.V. thanks University of Phayao, and Rajamangala University of Technology Suvarnabhumi for hospitality, where part of this work was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pichet Vanichchapongjaroen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanongkhun, J., Vanichchapongjaroen, P. On constrained analysis and diffeomorphism invariance of generalised Proca theories. Gen Relativ Gravit 52, 26 (2020). https://doi.org/10.1007/s10714-020-02678-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-020-02678-y

Keywords

Navigation