Skip to main content
Log in

Dynamical system analysis of a Dirac-Born-Infeld model: a center manifold perspective

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this paper we present the cosmological dynamics of a perfect fluid and the Dark Energy component of the Universe, where our model of the dark energy is the string-theoritic Dirac-Born-Infeld (DBI) model. We assume that the potential of the scalar field and the warp factor of the warped throat region of the compact space in the extra dimension for the DBI model are both exponential in nature. In the background of spatially flat Friedman–Robertson–Walker–Lemaître Universe, the Einstein field equations for the DBI dark energy reduce to a system of autonomous dynamical system. We then perform a dynamical system analysis for this system. Our analysis is motivated by the invariant manifold approach of the mathematical dynamics. In this method, it is possible to reach a definite conclusion even when the critical points of a dynamical system are non-hyperbolic in nature. Since we find the complete set of critical points for this system, the center manifold analysis ensures that our investigation of this model leaves no stone unturned. We find some interesting results such as that for some critical points there are situations where scaling solutions exist. Finally we present various topologically different phase planes and stability diagrams and discuss the corresponding cosmological scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Reiss, A.J., Supernova Search Team, et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116(3), 1009–1038 (1998)

  2. Perlmutter, S.J., Supernova Cosmology Project Collaboration, et al.: Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys. J. 517(2), 565–586 (1999)

  3. Spergel, D.N., WMAP Collaboration, et al.: Three year Wilkinson microwave anisotropy probe (WMAP) observations: implications for cosmology. Astrophys. J. Suppl. Ser. 170(2), 377–408 (2007)

  4. Komatsu, E., WMAP Collaboration, et al.: Five-year Wilkinson microwave anisotropy probe observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 180(2), 330–376 (2009)

  5. Percival, W.J., et al.: Measuring the Baryon acoustic oscillation scale using the Sloan digital sky survey and 2dF Galaxy Redshift Survey. Mon. Not. R. Astron. Soc. 381(3), 1053–1066 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  6. Amendola, L., Tsujikawa, S.: Dark Energy: Theory and Observations. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  7. Elijalde, E., Nojiri, S., Odintsov, S.D.: Late-time Cosmology in a (phantom) scalar-tensor theory: dark energy and the cosmic speed-up. Phys. Rev. D 70(4), 043539 (2004)

    Article  ADS  Google Scholar 

  8. Silverstein, E., Tong, D.: Scalar speed limits and cosmology: acceleration from D-eceleration. Phys. Rev. D 70(10), 103505 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  9. Guendelman, E., Singleton, D., Youngram, N.: A two measure model of dark energy and dark matter. JCAP 2004(07), 004 (2004)

    Article  Google Scholar 

  10. Pavon, D., Wang, B.: Le Chatelier–Braun principle in cosmological physics. Gen. Rel. Grav. 41(1), 1–5 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61(1), 1–23 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  12. Carroll, S.M.: Liv. Rev. Lett. 4, 1 (2001)

    MathSciNet  Google Scholar 

  13. Armendariz-Picon, C., Mukhanov, V., Steinherdt, P.J.: Dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration. Phys. Rev. Lett. 85(21), 4438–4441 (2000)

    Article  ADS  Google Scholar 

  14. Caldwell, R.R., Kamionkowski, M., Weinberg, N.N.: Causes a cosmic doomsday. Phys. Rev. Lett. 91(7), 071301 (2003)

    Article  ADS  Google Scholar 

  15. Sen, A.: J. H. E. P 207, 65 (2002)

  16. Copeland, E.J., Riddle, A.R., Wands, D.: Exponential potentials and cosmological scaling solutions. Phys. Rev. D 57(8), 4686–4690 (1998)

    Article  ADS  Google Scholar 

  17. Sahni, V., Starobinsky, A.: The case for a positive cosmological \(\Lambda \)- TERM. Int. J. Mod. Phys. D 09(04), 373–443 (2000)

    Google Scholar 

  18. Ratra, B., Peebles, P.J.E.: Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 37(12), 3406–3427 (1988)

    Article  ADS  Google Scholar 

  19. Caldwell, R.R., Dave, R., Steinherdt, P.J.: Cosmological imprint of an energy component with general equation of state. Phys. Rev. Lett. 80(8), 1582–1585 (1998)

    Article  ADS  Google Scholar 

  20. Zlatev, I., Wang, L., Steinhardt, P.J.: Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 82(5), 896–899 (1999)

    Article  ADS  Google Scholar 

  21. Olivares, G., Atrio-Barandela, F., Pavon, D.: Observational constraints on interacting quintessence models. Phys. Rev. D 71(6), 063523 (2005)

    Article  ADS  Google Scholar 

  22. Olivares, G., Atrio-Barandela, F., Pavon, D.: Metter density perturbations in interacting quintessence models. Phys. Rev. D 74(4), 043521 (2006)

    Article  ADS  Google Scholar 

  23. Armendariz-Picon, C., Mukhanov, V., Steinherdt, P.J.: Essentials of k-essence. Phys. Rev. D 63(10), 103510 (2001)

    Article  ADS  Google Scholar 

  24. Armendariz-Picon, C., Damour, T., Mukhanov, V.: K-Inflation. Phys. Lett. B 458(2–3), 209–218 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  25. Caldwell, R.R.: A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys. Lett. B 545(1–2), 23–29 (2002)

    Article  ADS  Google Scholar 

  26. Nojiri, S., Odintsov, S.D., Tsujikawa, S.: Properties of singularities in the (phantom) dark energy Universe. Phys. Rev. D 71(6), 063004 (2005)

    Article  ADS  Google Scholar 

  27. Piazza, F., Tsujikawa, S.: Dilatonic ghost condensate as dark energy. JCAP 2004(07), 004 (2004)

    Article  ADS  Google Scholar 

  28. Padmanabhan, T.: Accelerated expansion of the Universe driven by tachyonic matter. Phys. Rev. D 66(2), 021301 (2002)

    Article  ADS  Google Scholar 

  29. Chen, X.: Multithroat brane inflation. Phys. Rev. D 71(6), 063506 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  30. Chimento, Luis P., Lazkoz, Ruth, Richarte, Martin G.: Enhanced inflation in the Dirac-Born-Infeld framework. Phys. Rev. D 83(6), 063505 (2011)

    Article  ADS  Google Scholar 

  31. Kaeonikhom, C., Singleton, D., Sushkov, S.V., Youngram, N.: Dynamics of Dirac-Born-Infeld dark energy interacting with dark matter. Phys. Rev. D 86(12), 124049 (2012)

    Article  ADS  Google Scholar 

  32. Mahata, N., Chakraborty, S.: Dynamical system analysis for DBI dark energy interacting with dark matter. Mod. Phys. Lett. A 30(02), 1550009 (2015)

    Article  ADS  Google Scholar 

  33. Copeland, E.J., Shuntaro, M., Shaeri, M.: Cosmological dynamics of a Dirac-Born-Infeld field. Phys. Rev. D 81(12), 123501 (2010)

    Article  ADS  Google Scholar 

  34. Perko, L.: Differential Equations and Dynamical Systems. Springer, New York (1991)

    Book  Google Scholar 

  35. Arrowsmith, D.K., Place, C.M.: An Introduction to Dynamical Systems. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  36. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer, Berlin (2003)

    MATH  Google Scholar 

  37. Banerjee, A.S.: An Introduction to Center Manifold Theory

  38. Hirsch, M., Smale, S.: Differential Equations, Dynamical Systems and Linear Algebra. Academic Press, New York (1974)

    MATH  Google Scholar 

  39. Boehmer, C.G., Chan, N., Lazkoz, R.: Dynamics of dark energy models and centre manifolds. Phys. Lett. B 714, 11 (2012)

    Article  ADS  Google Scholar 

  40. Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhajyoti Pal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S., Chakraborty, S. Dynamical system analysis of a Dirac-Born-Infeld model: a center manifold perspective. Gen Relativ Gravit 51, 124 (2019). https://doi.org/10.1007/s10714-019-2608-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2608-0

Keywords

Navigation