Skip to main content
Log in

An independent search of gravitational waves in the first observation run of advanced LIGO using cross-correlation

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

This work describes a template-free method to search gravitational waves (GW) using data from the LIGO observatories simultaneously. The basic idea of this method is that a GW signal is present in a short-duration data segment if the maximum correlation-coefficient between the strain signals is higher than a significant threshold and its time difference is lower than the 10 ms of inter-observatory light propagation time. Hence, this method can be used to carry out blind searches of any types of GW irrespective of the waveform and of the source type and sky location. An independent search of injected and real GW signals from compact binary coalescences contained in the first observation run (O1) of advanced LIGO was carried out to asses its performance. On the basis of the results, the proposed method was able to detect GW produced by binary systems without making any assumption about them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abbott, B.P., Abbott, R., Abbott, T.D., Abernathy, M.R., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., et al. LIGO Scientific Collaboration and Virgo Collaboration: Phys. Rev. Lett. 116, 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102

  2. Abbott, B.P., Abbott, R., Abbott, T.D., Abernathy, M.R., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., et al. LIGO Scientific Collaboration and Virgo Collaboration: Phys. Rev. Lett. 116, 241103 (2016). https://doi.org/10.1103/PhysRevLett.116.241103

  3. Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., Adya, V.B., et al. LIGO Scientific and Virgo Collaboration: Phys. Rev. Lett. 118, 221101 (2017). https://doi.org/10.1103/PhysRevLett.118.221101

  4. Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., Adya, V.B., et al.: Astrophys. J. Lett. 851, L35 (2017)

    Article  ADS  Google Scholar 

  5. Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., Adya, V.B., et al. LIGO Scientific Collaboration and Virgo Collaboration: Phys. Rev. Lett. 119, 141101 (2017). https://doi.org/10.1103/PhysRevLett.119.141101

  6. Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., Adya, V.B., et al. LIGO Scientific Collaboration and Virgo Collaboration: Phys. Rev. Lett. 119, 161101 (2017). https://doi.org/10.1103/PhysRevLett.119.161101

  7. LIGO Scientific and Virgo Collaborations: GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs (2018) arXiv:1811.12907

  8. Einstein, A.: On the general theory of relativity. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1915, 778–786 (1915)

  9. Einstein, A.: The field equations of gravitation. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1915, 844–847 (1915)

  10. Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., Adya, V.B., et al.: Astrophys. J. Lett. 848, L12 (2017)

    Article  ADS  Google Scholar 

  11. Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., Adya, V.B., et al.: Astrophys. J. Lett. 848, L13 (2017)

    Article  ADS  Google Scholar 

  12. Maggiore, M.: Gravitational Waves: Volume 1: Theory and Experiments. Oxford University Press, Oxford (2007)

    Book  Google Scholar 

  13. Carroll, S.M.: Spacetime and Geometry: An Introduction to General Relativity. Addison Wesley, San Francisco (2004). ISBN 0-8053-8732-3

    MATH  Google Scholar 

  14. Shapiro, S.L., Teukolsky, S.A.: Black Holes, White Dwarfs, and Neutron Star: The Physics of Compact Objects. Wiley, New York (1983). ISBN 978-0471873167

    Book  Google Scholar 

  15. Abbott, B.P., Abbott, R., Adhikari, R., Ajith, P., Allen, B., Allen, G., Amin, R.S., Anderson, S.B., Anderson, W.G., Arain, M.A., et al.: Rep. Prog. Phys. 72, 076901 (2009)

    Article  ADS  Google Scholar 

  16. T.L.S. Collaboration: Class. Quantum Gravity 32, 074001 (2015). http://stacks.iop.org/0264-9381/32/i=7/a=074001

  17. Acernese, F., Agathos, M., Agatsuma, K., Aisa, D., Allemandou, N., Allocca, A., Amarni, J., Astone, P., Balestri, G., Ballardin, G., et al.: Class. Quantum Gravity 32, 024001 (2015)

    Article  ADS  Google Scholar 

  18. Allen, B., Anderson, W.G., Brady, P.R., Brown, D.A., Creighton, J.D.E.: Phys. Rev. D 85, 122006 (2012). https://doi.org/10.1103/PhysRevD.85.122006

    Article  ADS  Google Scholar 

  19. Allen, B.: Phys. Rev. D 71, 062001 (2005). https://doi.org/10.1103/PhysRevD.71.062001

    Article  ADS  Google Scholar 

  20. Buonanno, A., Damour, T.: Phys. Rev. D 62, 064015 (2000). https://doi.org/10.1103/PhysRevD.62.064015

    Article  ADS  Google Scholar 

  21. Poisson, E., Will, C.: Gravity: Newtonian, Post-Newtonian, Relativistic. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  22. Antelis, J.M., Herández, J.M., Moreno, C.: J. Phys. Conf. Ser. 1030, 012005 (2018)

    Article  Google Scholar 

  23. Moreno, C., Degollado, J.C., Núñez, D.: Gen. Relativ. Gravit. 49, 83 (2017). 1612.07567

    Article  ADS  Google Scholar 

  24. Baumgarte, T.W., Shapiro, S.L.: Numerical Relativity: Solving Einstein’s Equations on the Computer. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  25. Gill, K., Wang, W., Valdez, O., Szczepanczyk, M., Zanolin, M., Mukherjee, S.: (2018). arXiv:1802.07255

  26. Klimenko, S., Yakushin, I., Mercer, A., Mitselmakher, G.: Class. Quantum Gravity 25, 114029 (2008). arXiv:0802.3232

  27. Naselsky, P., Jackson, A.D., Liu, H.: J. Cosmol. Astropart. Phys. 2016, 029 (2016)

    Article  Google Scholar 

  28. Allen, B., Romano, J.D.: Phys. Rev. D 59, 102001 (1999). https://doi.org/10.1103/PhysRevD.59.102001

    Article  ADS  Google Scholar 

  29. Dhurandhar, S., Krishnan, B., Mukhopadhyay, H., Whelan, J.T.: Phys. Rev. D 77, 082001 (2008). https://doi.org/10.1103/PhysRevD.77.082001

    Article  ADS  Google Scholar 

  30. Abbott, B.P., Abbott, R., Abbott, T.D., Abernathy, M.R., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., et al. The LIGO Scientific Collaboration and the Virgo Collaboration: Phys. Rev. D 93, 042005 (2016). https://doi.org/10.1103/PhysRevD.93.042005

  31. Coyne, R., Corsi, A., Owen, B.J.: Phys. Rev. D 93, 104059 (2016). https://doi.org/10.1103/PhysRevD.93.104059

    Article  ADS  Google Scholar 

  32. Proakis, J., Manolakis, D.: Digital Signal Processing: Principles, Algorithms, and Applications. Simon & Schuster Books For Young Readers, Singapore (1992). ISBN 9780023968150

    Google Scholar 

  33. Welch, P.D.L.: IEEE Trans. Audio Electroacoust. 15, 70 (1967)

    Article  Google Scholar 

  34. Vallisneri, M., Kanner, J., Williams, R., Weinstein, A., Stephens, B.: J. Phys. Conf. Ser. 610, 012021 (2015)

    Article  Google Scholar 

  35. Biwer, C., Barker, D., Batch, J.C., Betzwieser, J., Fisher, R.P., Goetz, E., Kandhasamy, S., Karki, S., Kissel, J.S., Lundgren, A.P., et al.: Phys. Rev. D 95, 062002 (2017). https://doi.org/10.1103/PhysRevD.95.062002

    Article  ADS  Google Scholar 

  36. Abbott, B.P., Abbott, R., Abbott, T.D., Abernathy, M.R., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., et al. LIGO Scientific Collaboration and Virgo Collaboration: Phys. Rev. X 6, 041015 (2016). https://doi.org/10.1103/PhysRevX.6.041015

  37. Antelis, J.M., Moreno, C.: Eur. Phys. J. Plus 132, 10 (2017). https://doi.org/10.1140/epjp/i2017-11283-5

    Article  Google Scholar 

  38. Affeldt, C., Danzmann, K., Dooley, K.L., Grote, H., Hewitson, M., Hild, S., Hough, J., Leong, J., Lück, H., Prijatelj, M., et al.: Class. Quantum Gravity 31, 224002 (2014)

    Article  ADS  Google Scholar 

  39. Somiya, K.: Class. Quantum Gravity 29, 124007 (2012)

    Article  ADS  Google Scholar 

  40. Carrillo, M., Gracia-Linares, M., González, J.A., Guzmán, F.S.: Gen. Relativ. Gravit. 48, 141 (2016). https://doi.org/10.1007/s10714-016-2136-0

    Article  ADS  Google Scholar 

  41. George, D., Huerta, E.: Physics Letters B 778, 64 (2018), ISSN 0370-2693, http://www.sciencedirect.com/science/article/pii/S0370269317310390

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research has made use of data, software and/or web tools obtained from the LIGO Open Science Center (https://losc.ligo.org), a service of LIGO Laboratory, the LIGO Scientific Collaboration and the Virgo Collaboration. The U.S. National Science Foundation funds LIGO. The French Centre National de Recherche Scientifique (CNRS), the Italian Istituto Nazionale della Fisica Nucleare (INFN) and the Dutch Nikhef, with contributions by Polish and Hungarian institute funds VIRGO. The authors would like to thank the support of the CONACyT Network Project No. 294625 “Agujeros Negros y Ondas Gravitatorias” and the CONACyT-AEM Grant No. 262847. CM thanks the support of PROSNI-UDG 2018 and PRODEP UDG-CA-813.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier M. Antelis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antelis, J.M., Moreno, C. An independent search of gravitational waves in the first observation run of advanced LIGO using cross-correlation. Gen Relativ Gravit 51, 61 (2019). https://doi.org/10.1007/s10714-019-2546-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2546-x

Keywords

Navigation