Skip to main content
Log in

Rainbow black hole thermodynamics and the generalized uncertainty principle

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study the phase transition of rainbow inspired higher dimensional Schwarzschild black hole incorporating the effects of the generalized uncertainty principle. First, we obtain the relation between the mass and Hawking temperature of the rainbow inspired black hole taking into account the effects of the modified dispersion relation and the generalized uncertainty principle. The heat capacity is then computed from this relation which reveals that there are remnants. The entropy of the black hole is next obtained in \(3+1\) and \(4+1\)-dimensions and is found to have logarithmic corrections only in \(3+1\)-dimensions. We further investigate the local temperature, free energy and stability of the black hole in an isothermal cavity. From the analysis of the free energy, we find that there are two Hawking–Page type phase transitions in \(3+1\) and \(4+1\)-dimensions if we take into account the generalized uncertainty principle. However, in the absence of the generalized uncertainty principle, only one Hawking–Page type phase transition exists in spacetime dimensions greater than four.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Note that loop quantum gravity does not impose any restriction on the value of n.

  2. It should be noted that the expression agrees upto a factor with [38].

References

  1. Rovelli, C.: Living Rev. Relativ. 1, 1 (1998)

    Article  ADS  Google Scholar 

  2. Carlip, S.: Rep. Prog. Phys. 64, 885 (2001)

    Article  ADS  Google Scholar 

  3. Amati, D., Ciafaloni, M., Veneziano, G.: Phys. Lett. B 216, 41 (1989)

    Article  ADS  Google Scholar 

  4. Girelli, F., Livine, E.R., Oriti, D.: Nucl. Phys. B 708, 411 (2005)

    Article  ADS  Google Scholar 

  5. Maggiore, M.: Phys. Lett. B 304, 65 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  6. Park, M.I.: Phys. Lett. B 659, 698 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  7. Amelino-Camelia, G.: Int. J. Mod. Phys. D 11, 35 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  8. Magueijo, J., Smolin, L.: Class. Quantum Gravity 21, 1725 (2004)

    Article  ADS  Google Scholar 

  9. Magueijo, J., Smolin, L.: Phys. Rev. Lett. 88, 190403 (2002)

    Article  ADS  Google Scholar 

  10. Magueijo, J., Smolin, L.: Phys. Rev. D 67, 044017 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  11. Alfaro, J., Morales-Tecotl, H.A., Urrutia, L.F.: Phys. Rev. D 65, 103509 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  12. Sahlmann, H., Thiemann, T.: Class. Quantum Gravity 23, 909 (2006)

    Article  ADS  Google Scholar 

  13. Smolin, L.: Nucl. Phys. B 742, 142 (2006)

    Article  ADS  Google Scholar 

  14. Amelino-Camelia, G.: Symmetry 2, 230 (2010)

    Article  Google Scholar 

  15. Kempf, A., Mangano, G., Mann, R.B.: Phys. Rev. D 52, 1108 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  16. Scardigli, F.: Phys. Lett. B 452, 39–44 (1999)

    Article  ADS  Google Scholar 

  17. Kalyana Rama, S.: Phys. Lett. B 519, 103 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  18. Chang, L.N., Minic, D., Okamura, N., Takeuchi, T.: Phys. Rev. D 65, 125028 (2002)

    Article  ADS  Google Scholar 

  19. Colladay, D., Kosteleck, V.A.: Phys. Rev. D 58, 116002 (1998)

    Article  ADS  Google Scholar 

  20. Colladay, D., Kosteleck, V.A.: Phys. Rev. D 55, 6760 (1997)

    Article  ADS  Google Scholar 

  21. Lambiase, G., Scardigli, F.: Phys. Rev. D 97, 075003 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. Myung, Y.S., Kim, Y.W., Park, Y.J.: Phys. Lett. B 645, 393 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  23. Dutta, A., Gangopadhyay, S.: Gen. Relativ. Gravit. 46, 1747 (2014)

    Article  ADS  Google Scholar 

  24. Adler, R.J., Chen, P., Santiago, D.I.: Gen. Relativ. Gravit. 33, 2101 (2001)

    Article  ADS  Google Scholar 

  25. Gangopadhyay, S., Dutta, A., Saha, A.: Gen. Relativ. Gravit. 46, 1661 (2014)

    Article  ADS  Google Scholar 

  26. Chen, P., Ong, Y.C., Yeom, D.H.: Phys. Rep. 603, 1 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  27. Gangopadhyay, S., Dutta, A., Faizal, M.: Europhys. Lett. 112, 20006 (2015)

    Article  ADS  Google Scholar 

  28. Ali, A.F.: Phys. Rev. D 89, 104040 (2014)

    Article  ADS  Google Scholar 

  29. Ali, A.F., Fizal, M., Khalil, M.M.: Nucl. Phys. B 894, 341 (2015)

    Article  ADS  Google Scholar 

  30. Gangopadhyay, S., Dutta, A.: Europhys. Lett. 115, 50005 (2016)

    Article  ADS  Google Scholar 

  31. Ling, Y., Li, X., Zhang, H.B.: Mod. Phys. Lett. A 22, 2749 (2007)

    Article  ADS  Google Scholar 

  32. Kim, Y.W., Kim, S.K., Park, Y.J.: Eur. Phys. J. C 76, 557 (2016)

    Article  ADS  Google Scholar 

  33. Feng, Z.W., Yang, S.Z.: Phys. Lett. B 772, 737 (2017)

    Article  ADS  Google Scholar 

  34. Li, H., Ling, Y., Han, X.: Class. Quantum Gravity 26, 065004 (2009)

    Article  ADS  Google Scholar 

  35. Rudra, P., Faizal, M., Ali, A.F.: Nucl. Phys. B 909, 725 (2016)

    Article  ADS  Google Scholar 

  36. Heydarzade, Y., Rudra, P., Darabi, F., Ali, A.F., Faizal, M.: Phys. Lett. B 774, 46 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  37. Ali, A.F., Faizal, M., Khalil, M.M.: Phys. Lett. B 743, 295 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  38. Gim, Y., Kim, W.: JCAP 1410, 003 (2014)

    Article  ADS  Google Scholar 

  39. Tolman, R.C.: Phys. Rev. 35, 904 (1930)

    Article  ADS  Google Scholar 

  40. York Jr., J.W.: Phys. Rev. D 33, 2092 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  41. Cai, R.G.: Phys. Rev. D 65, 084014 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  42. Kim, W., Kim, Y.: Phys. Lett. B 718, 687 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

RM would like to thank DST-INSPIRE, Govt. of India for financial support. RM would also like to thank Anant Vijay Varma of IISER-Kolkata for helping in Mathematica. SB would also like to thank the Government of West Bengal for financial support under the scheme Swami Vivekananda Merit-Cum-Means Scholarship. SG acknowledges the support by DST SERB under Start Up Research Grant (Young Scientist), File No.YSS/2014/000180. SG also acknowledges IUCAA, Pune for the Visiting Associateship. The authors would also like to thank the referee for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunandan Gangopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, R., Bhattacharyya, S. & Gangopadhyay, S. Rainbow black hole thermodynamics and the generalized uncertainty principle. Gen Relativ Gravit 50, 143 (2018). https://doi.org/10.1007/s10714-018-2468-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-018-2468-z

Keywords

Navigation