Skip to main content
Log in

A new model for strange stars

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In the present work, we attempt to find a new class of solutions for the spherically symmetric perfect fluid sphere by employing the homotopy perturbation method (HPM), a new tool via which the mass polynomial function facilitates to tackle the Einstein field equations. A set of interior solutions found on the basis of the simplest MIT bag model equation of state in the form \(p=\frac{1}{3}(\rho -4B)\) where B is the bag constant. The proposed interior metric for the stellar system is consistent with the exterior Schwarzschild spacetime on the boundary. In addition, we also conduct a detailed study on different tests, viz. the energy conditions, TOV equation, adiabatic index, Buchdahl limit, etc., to verify the physical validity of the proposed model. The numerical value of the used parameters are predicted for different strange star candidates, for different chosen values of the bag constant. In a nutshell, by exploiting HPM technique first time ever in the field of relativistic astrophysics, we have predicted in the present literature a singularity-free and stable stellar model which is suitable to describe ultra-dense objects, like strange (quark) stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bodmer, A.R.: Phys. Rev. D 4, 1601 (1971)

    Article  ADS  Google Scholar 

  2. Terazawa, H.: INS Report 336, Tokio University (1979)

  3. Witten, E.: Phys. Rev. D 30, 272 (1984)

    Article  ADS  Google Scholar 

  4. Haensel, P., Zdunik, J.L., Schaefer, R.: Astron. Astrophys. 160, 121 (1986)

    ADS  Google Scholar 

  5. Schwarzschild. K.: Sitzungsberichte der Kniglich-Preussischen Akademie der Wissenschaften, Berlin p. 189 (1916)

  6. Oppenheimer, J.R., Volkoff, G.M.: Phys. Rev. 55, 374 (1939)

    Article  ADS  Google Scholar 

  7. Tolman, R.C.: Phys. Rev. 55, 364 (1939)

    Article  ADS  Google Scholar 

  8. Delgaty, M.S.R., Lake, K.: Comput. Phys. Commun. 115, 395 (1998)

    Article  ADS  Google Scholar 

  9. Finch, M.R., Skea, J.E.F.: Class. Quantum Grav. 6, 467 (1989)

    Article  ADS  Google Scholar 

  10. Nilsson, U.S., Uggla, C.: Ann. Phys. 286, 292 (2000)

    Article  ADS  Google Scholar 

  11. Rahman, S., Visser, M.: Class. Quantum Grav. 19, 935 (2002)

    Article  ADS  Google Scholar 

  12. Lake, K.: Phys. Rev. D 67, 104015 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  13. Martin, D., Visser, M.: Phys. Rev. D 69, 104028 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  14. Boonserm, P., Visser, M., Weinfurtner, S.: Phys. Rev. D 71, 124037 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  15. He, J.-H.: Commun. Nonlinear Sci. Numer. Simul. 3, 92 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  16. He, J.-H.: Commun. Nonlinear Sci. Numer. Simul. 3, 106 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  17. He, J.-H.: Comput. Methods Appl. Mech. Eng. 178, 257 (1999)

    Article  ADS  Google Scholar 

  18. He, J.-H.: Int. J. Nonlinear Mech. 35, 37 (2000)

    Article  ADS  Google Scholar 

  19. Mallil, E., Lahmam, H., Damil, N., Potier-Ferry, M.: Comput. Methods Appl. Mech. Eng. 190, 1845 (2000)

    Article  ADS  Google Scholar 

  20. Elhage-Hussein, A., Potier-Ferry, M., Damil, N.: Int. J. Solids Struct. 37, 6981 (2000)

    Article  Google Scholar 

  21. Hillermeier, C.: Int. J. Optim. Theory Appl. 110, 557 (2001)

    Article  MathSciNet  Google Scholar 

  22. Cadou, J.-M., Moustaghfir, N., Mallil, E.H., Damil, N., Potier-Ferry, M.: C. R. Acad. Sci. Paris 329, 457 (2001)

    Google Scholar 

  23. Mokhtari, R.E.L., Cadou, J.-M., Potier-Ferry, M.: XVeme Congres Francais de Mecanique, Nancy, p. 1 (2001)

  24. Jegen, M.D., Everett, M.E., Schultz, A.: Geophysics 66, 1749 (2001)

    Article  ADS  Google Scholar 

  25. He, J.-H.: Appl. Math. Comput. 156, 527 (2004)

    MathSciNet  Google Scholar 

  26. Cveticanin, L.: Chaos Solitons Fractals 30, 1221 (2006)

    Article  ADS  Google Scholar 

  27. Zare, M., Jalili, O., Delshadmanesh, M.: Indian J. Phys. 86, 855 (2012)

    Article  ADS  Google Scholar 

  28. Shchigolev, V.K.: Univ. J. Appl. Math. 2, 99 (2014)

    Google Scholar 

  29. Shchigolev, V.K.: Univ. J. Comput. Math. 3, 45 (2015)

    Google Scholar 

  30. Shchigolev, V.K.: Gravit. Cosmol. 23, 142 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  31. Rahaman, F., Chakraborty, K., Kuhfittig, P.K.F., Shit, G.C., Rahman, M.: Eur. Phys. J. C 74, 3126 (2014)

    Article  ADS  Google Scholar 

  32. Aziz, A., Roy Chowdhury, S., Deb, D., Rahaman, F., Ray, S., Guha, B.K.: arXiv:1504.05838

  33. Aziz, A., Ray, S., Rahaman, F.: Eur. Phys. J. C 76, 248 (2016)

    Article  ADS  Google Scholar 

  34. Rawls, M.L., Orosz, J.A., McClintock, J.E., Torres, M.A.P., Bailyn, C.D., Buxton, M.M.: Astrophys. J. 730, 25 (2011)

    Article  ADS  Google Scholar 

  35. Güver, T., Oz̈el, F., Cabrera-Lavers, A., Wroblewski, P.: ApJ 712, 964 (2010)

    Article  ADS  Google Scholar 

  36. Freire, P.C.C.: Mon. Not. R. Astron. Soc. 412, 2763 (2011)

    Article  ADS  Google Scholar 

  37. Güver, T., Wroblewski, P., Camarota, L., Oz̈el, F.: ApJ 719, 1807 (2010)

    Article  ADS  Google Scholar 

  38. Demorest, P.B., Pennucci, T., Ransom, S.M., Roberts, M.S.E., Hessels, J.W.T.: Nature 467, 1081 (2010)

    Article  ADS  Google Scholar 

  39. Farhi, E., Jaffe, R.L.: Phys. Rev. D 30, 2379 (1984)

    Article  ADS  Google Scholar 

  40. Brilenkov, M., Eingorn, M., Jenkovszky, L., Zhuk, A.: JCAP 08, 002 (2013)

    Article  ADS  Google Scholar 

  41. Panda, N.R., Mohanta, K.K., Sahu, P.K.: J. Phys.: Conf. Ser. 599, 012036 (2015)

    Google Scholar 

  42. Isayev, A.A.: Phys. Rev. C 91, 015208 (2015)

    Article  ADS  Google Scholar 

  43. Maharaj, S.D., Sunzu, J.M., Ray, S.: Eur. Phys. J. Plus 129, 3 (2014)

    Article  Google Scholar 

  44. Paulucci, L., Horvath, J.E.: Phys. Lett. B 733, 164 (2014)

    Article  ADS  Google Scholar 

  45. Abbas, G., Qaisar, S., Jawad, A.: Astrophys. Space Sci. 359, 57 (2015)

    Article  ADS  Google Scholar 

  46. Arbañil, J.D.V., Malheiro, M.: JCAP 11, 012 (2016)

    Article  ADS  Google Scholar 

  47. Lugones, G., Arbañil, J.D.V.: Phys. Rev. D 95, 064022 (2017)

    Article  ADS  Google Scholar 

  48. Kalam, M., Usmani, A.A., Rahaman, F., Hossein, S.M., Karar, I., Sharma, R.: Int. J. Theor. Phys. 52, 3319 (2013)

    Article  Google Scholar 

  49. Burgio, G.F., Baldo, M., Sahu, P.K., Schulze, H.-J.: Phys. Rev. C 66, 025802 (2002)

    Article  ADS  Google Scholar 

  50. Alcock, C., Farhi, E., Olinto, A.: Astrophys. J. 310, 261 (1986)

    Article  ADS  Google Scholar 

  51. de León, Ponce: J. Gen. Relativ. Gravit. 25, 1123 (1993)

    Article  ADS  Google Scholar 

  52. Varela, V., Rahaman, F., Ray, S., Chakraborty, K., Kalam, M.: Phys. Rev. D 82, 044052 (2010)

    Article  ADS  Google Scholar 

  53. Buchdahl, H.A.: Phys. Rev. 116, 1027 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  54. Chandrasekhar, S.: Astrophys. J. 140, 417 (1964)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

SR and FR are thankful to the Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India for providing Visiting Associateship under which a part of this work was carried out. SR is also thankful to the authority of The Institute of Mathematical Sciences (IMSc), Chennai, India for providing all types of working facility and hospitality under the Associateship scheme. FR is also grateful to DST-SERB (EMR/2016/000193), Govt. of India for providing financial support. A part of this work was completed while DD was visiting IUCAA and the author gratefully acknowledges the warm hospitality and facilities at the library there. We all are thankful to the anonymous referee for several pertinent comments which have helped us to upgrade the manuscript substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saibal Ray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deb, D., Roy Chowdhury, S., Ray, S. et al. A new model for strange stars. Gen Relativ Gravit 50, 112 (2018). https://doi.org/10.1007/s10714-018-2434-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-018-2434-9

Keywords

Navigation