Skip to main content
Log in

Dimensional reduction via a novel Higgs mechanism

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Many theories of quantum gravity live in higher dimensions, and their reduction to four dimensions via mechanisms such as Kaluza–Klein compactification or brane world models have associated problems. We propose a novel mechanism of dimensional reduction via spontaneous symmetry breaking of a higher dimensional local Lorentz group to one in lower dimensions. Working in the gauge theory formulation of gravity, we couple a Higgs field to spin connections, include a potential for the field, and show that for a suitable choice of Higgs vacuum, the local Lorentz symmetry of the action gets spontaneously reduced to one in a lower dimension. Thus effectively the dimension of spacetime gets reduced by one. This provides a viable mechanism for the dimensional reduction, and may have applications in theories of quantum gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Green, M.B., Schwarz, J.H., Witten, E.: Superstring Theory, vol. I and II. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  2. Scherk, J., Schwarz, J.H.: Phys. Lett. B 57, 463 (1975)

    Article  ADS  Google Scholar 

  3. Rubakov, V.A., Shaposhnikov, M.E.: Phys. Lett. B 125, 136 (1983)

    Article  ADS  Google Scholar 

  4. Arkani-Hamed, N., Dimopoulos, S., Dvali, G.: Phys. Lett. B 429, 263–272 (1998)

    Article  ADS  Google Scholar 

  5. Randall, L., Sundrum, R.: Phys. Rev. Lett. 83, 3370–3373 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  6. Chatrchyan, S., et al.: (CMS Collaboration), JHEP 1209, 094 (2012)

  7. Neupane, I.P.: Phys. Rev. D 90(12), 123502 (2014)

    Article  ADS  Google Scholar 

  8. Buchbinder, I.L., Odintsov, S.D.: Class. Quant. Grav. 2, 721–731 (1985)

    Article  ADS  Google Scholar 

  9. Elizalde, E., Odintsov, S.D., Romeo, A.: Phys. Rev. D 51, 4250 (1995). [arXiv:hep-th/9410028]

    Article  ADS  Google Scholar 

  10. Zee, A.: Phys. Rev. Lett. 42, 417 (1979)

    Article  ADS  Google Scholar 

  11. Magueijo, J., Smolin, L.: Class. Quant. Grav. 21, 1725 (2004). [gr-qc/0305055]

    Article  ADS  Google Scholar 

  12. Percacci, R.: Phys. Lett. 144B, 37 (1984)

    Article  ADS  Google Scholar 

  13. Percacci, R.: Nucl. Phys. B 353, 271 (1991). [arXiv:0712.3545 [hep-th]]

    Article  ADS  Google Scholar 

  14. Kostelecky, V.A., Samuel, S.: Phys. Rev. D 39, 683 (1989)

    Article  ADS  Google Scholar 

  15. Shapiro, I.L., Takata, H.: Phys. Rev. D 52, 2162 (1995). arXiv:hep-th/9502111

    Article  ADS  Google Scholar 

  16. Bluhm, R., Kostelecky, A.: Phys. Rev. D 71, 065008 (2005). arXiv:hep-th/0412230

    Article  ADS  Google Scholar 

  17. Kirsch, I.: Phys. Rev. D 72, 024001 (2005). arXiv:hep-th/0503024

    Article  ADS  MathSciNet  Google Scholar 

  18. Leclerc, M.: Ann. Phys. 321, 708 (2006). [gr-qc/0502005]

    Article  ADS  Google Scholar 

  19. Wever, C.S.P.: A Higgs mechanism for gravity. University of Utrecht Master’s Thesis (2009)

  20. Chamseddine, A.H., Mukhanov, V.: JHEP 1208, 036 (2012). [arXiv:1205.5828 [hep-th]]

    Article  ADS  Google Scholar 

  21. Moffat, J.W.: Class. Quant. Grav. 27, 135016 (2010). [arXiv:0905.1668 [hep-th]]

    Article  ADS  Google Scholar 

  22. Moffat, J.W.: Found. Phys. 23, 411 (1993). [gr-qc/9209001]

    Article  ADS  MathSciNet  Google Scholar 

  23. Das, S., Ghosh, S.: arXiv:1006.5774, 1108.2163

  24. Krasnov, K.: Phys. Rev. D 85, 125023 (2012). [arXiv:1112.5097 [hep-th]]

    Article  ADS  Google Scholar 

  25. Arraut, I.: Europhys. Lett. 111, 61001 (2015). [arXiv:1509.08338]

    Article  ADS  Google Scholar 

  26. Das, S., Faizal, M., Vagenas, E.C.: arXiv:1805.08665 (IJMPD, to appear)

  27. Ramond, P.: Field theory: a modern primer. Front. Phys. 74, 1 (1989)

    Google Scholar 

  28. Feynman, R.P.: Feynman Lectures on Gravitation. Addison-Wesley, Boston (1995)

    Google Scholar 

  29. Deser, S.: Class. Quant. Grav. 4, L99 (1987)

    Article  ADS  Google Scholar 

  30. Lovelock, D.: Arch. Rat. Mech. Anal. 33, 54 (1969)

    Article  Google Scholar 

  31. Cottingham, W.N., Greenwood, D.A.: An Introduction to the Standard Model of Particle Physics, 2nd edn. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  32. Cheng, T., Li, L.: Gauge Theory of Elementary Particle Physics. Oxford University Press, Oxford (1982)

    Google Scholar 

  33. Lovelock, D.: J. Math. Phys. 12, 498 (1971)

    Article  ADS  Google Scholar 

  34. Zwiebach, B.: Phys. Lett. B 156, 315 (1985)

    Article  ADS  Google Scholar 

  35. Boulware, D.G., Deser, S.: Phys. Rev. Lett. 55, 2656 (1985)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank P. Diaz, G. Kunstatter, R. B. Mann, J. Moffat, D. Smith, E. C. Vagenas and M. Walton for discussions. We thank the Referees for their useful comments. This work is supported by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurya Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Faizal, M. Dimensional reduction via a novel Higgs mechanism. Gen Relativ Gravit 50, 87 (2018). https://doi.org/10.1007/s10714-018-2409-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-018-2409-x

Keywords

Navigation