Skip to main content
Log in

How to use the Sun–Earth Lagrange points for fundamental physics and navigation

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We illustrate the proposal, nicknamed LAGRANGE, to use spacecraft, located at the Sun–Earth Lagrange points, as a physical reference frame. Performing time of flight measurements of electromagnetic signals traveling on closed paths between the points, we show that it would be possible: (a) to refine gravitational time delay knowledge due both to the Sun and the Earth; (b) to detect the gravito-magnetic frame dragging of the Sun, so deducing information about the interior of the star; (c) to check the possible existence of a galactic gravitomagnetic field, which would imply a revision of the properties of a dark matter halo; (d) to set up a relativistic positioning and navigation system at the scale of the inner solar system. The paper presents estimated values for the relevant quantities and discusses the feasibility of the project analyzing the behavior of the space devices close to the Lagrange points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Here \(g_{00}\) represents the time-time component of the metric, while the other terms provide spatial and mixed contributions.

  2. We considered only the main contribution, that arises from the first even zonal harmonic, with respect to the deviation from the spherical symmetry in the mass distribution of the Earth.

  3. Here \(\gamma \) (not to be confused with the PPN parameter commonly designated by the same symbol) and \(\beta \) represent two of the Euler angles that define the orientation of their symmetry plane with respect to the lens plane, while \(\alpha \) represents the angular position of a generic light ray over the lens plane.

  4. It should actually be in the barycenter of the Sun–Earth pair, but the difference should be discussed among the perturbations of the spherically symmetric system.

  5. In the center of our galaxy, there is an extremely dense compact object (Sagittarius A*) most probably consisting of a black hole.

  6. LSR stands for Local Standard of Rest.

References

  1. Perdomo, O.M.: Existence and stability of Lagrangian points in the relativistic restricted three body problem. arXiv:1601.00924v1 (2016)

  2. Bennett, C.L., et al.: Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: final maps and results. Astrophys. J. Suppl. Ser. 208, 20B (2013)

    Article  ADS  Google Scholar 

  3. Herschel, E.S.A.: Herschel Brochure, ESA (2013)

  4. Adam, R., et al.: Planck 2015 results—I. Overview of products and scientific results. Astron. Astrophys. 594, 1–38 (2016)

    Google Scholar 

  5. ESA: Gaia overview, published on line on the site of ESA (2017)

  6. NASA: Deep Space Climate Observatory, published on line on the site of NASA (2017)

  7. Baldwin, E., Fleck, B., Müller, D.: Two decades of observing the Sun. Eur. Space Agency Bull. 163, 1–23 (2015)

    Google Scholar 

  8. ESA, LISA PATHFINDER: First steps to observing gravitational waves from space. ESA Brochure, BR-323, pp. 1–16 (2015)

  9. Battista, E., et al.: Earth–moon Lagrangian points as a test bed for general relativity and effective field theories of gravity. Phys. Rev. D 92, 064045 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  10. Schwarzschild, K.: Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie, Sitzungsberichte der Koeniglich Preussischen Akademie der Wissenschaften, Berlin, Preussischen Akademie der Wissenschaften, pp. 189–196 (1916)

  11. Thorne, K.S.: Gravitomagnetism, jets in quasars, and the stanford gyroscope experiment. In: Fairbank, J.D., Deaver Jr., B.S., Everitt, C.W.F., Ichelson, P.F.M. (eds.) Near Zero: New Frontiers of Physics, pp. 573–586. W. H. Freeman and Company, New York (1988)

    Google Scholar 

  12. Shapiro, I.I., et al.: Fourth test of general relativity—new radar result. Phys. Rev. Lett. 26, 1132–1135 (1971)

    Article  ADS  Google Scholar 

  13. Anderson, J.D., et al.: Experimental test of general relativity using time-delay data from Mariner 6 and Mariner 7. Astrophys. J. 200, 221–233 (1975)

    Article  ADS  Google Scholar 

  14. Shapiro, I.I., et al.: The viking relativity experiment. J. Geophys. Res. 82, 4329–4334 (1977)

    Article  ADS  Google Scholar 

  15. Reasenberg, R.D., et al.: Viking relativity experiment—verification of signal retardation by solar gravity. Astrophys. J. Lett. 234, 219–221 (1979)

    Article  ADS  Google Scholar 

  16. Bertotti, B., Iess, L., Tortora, P.: A test of general relativity using radio links with the Cassini spacecraft. Nature 425, 374–376 (2003)

    Article  ADS  Google Scholar 

  17. Kerr, R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237–238 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Ohanian, H.C., Ruffini, R.: Gravitation and Spacetime. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  19. Will, C.M.: Theory and Experiment in Gravitational Physics. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  20. Ciufolini, I., Ricci, F.: Time delay due to spin and gravitational lensing. Class. Quantum Gravity 19, 3863–3874 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Ruggiero, M.L., Tartaglia, A.: Gravitomagnetic effects. Il Nuovo Cimento B 117, 743–768 (2002)

    ADS  Google Scholar 

  22. Reigber, Ch., et al.: An Earth gravity field model complete to degree and order \(150\) from GRACE: EIGEN-GRACE02S. J. Geodyn. 39, 1–10 (2005)

    Article  ADS  Google Scholar 

  23. Cheng, M., Tapley, B.D., Ries, J.C.: Deceleration in the Earths oblateness. J. Geophys. Res. 118, 740–747 (2013)

    Article  ADS  Google Scholar 

  24. Al-Masoudi, Ali, et al.: Noise and instability of an optical lattice clock. Phys. Rev. A 92, 063814 (2015)

    Article  ADS  Google Scholar 

  25. Nicholson, T.L., et al.: Systematic evaluation of an atomic clock at \(2 \times 10^{18}\) total uncertainty. Nat. Commun. 6, 6896 (2015)

    Article  Google Scholar 

  26. Thirring, H.: Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie. Phys. Z. 19, 33 (1918)

    MATH  Google Scholar 

  27. Lense, J., Thirring, H.: Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z. 19, 156 (1918)

    MATH  Google Scholar 

  28. Ciufolini, I., Pavlis, E.C.: A confirmation of the general relativistic prediction of the Lense–Thirring effect. Nature 431, 958–960 (2004)

    Article  ADS  Google Scholar 

  29. Ciufolini, I., et al.: Testing gravitational physics with satellite laser ranging. Eur. Phys. J. Plus 126, 1–19 (2011)

    Article  Google Scholar 

  30. Everitt, C.W.F., et al.: Gravity probe B: final results of a space experiment to test general relativity. Phys. Rev. Lett. 106, 221101 (2011)

    Article  ADS  Google Scholar 

  31. Ciufolini, I., et al.: A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model. Eur. Phys. J. C 76, 120 (2016)

    Article  ADS  Google Scholar 

  32. Bosi et al, F.: Measuring gravitomagnetic effects by a multi-ring-laser gyroscope. Phys. Rev. D 84, 122002-1–122002-23 (2011)

    ADS  Google Scholar 

  33. DiVirgilio, A., et al.: A ring lasers array for fundamental physics. C. R. Phys. 15, 866–874 (2014)

    Article  ADS  Google Scholar 

  34. Tartaglia, A., et al.: Testing general relativity by means of ring lasers. Eur. Phys. J. Plus 132, 73 (2017)

    Article  Google Scholar 

  35. Sagnac, M.G.: A ring lasers array for fundamental physics. C. R. Acad. Sci. 157, 708–710 (1913)

    Google Scholar 

  36. DiVirgilio, A., et al.: A LASER gyroscope system to detect the gravito-magnetic effect on Earth. Int. J. Mod. Phys. D 19, 2331–2343 (2010)

    Article  ADS  Google Scholar 

  37. Ruggiero, M.L., Tartaglia, A.: A note on the Sagnac effect for matter beams. Eur. Phys. J. Plus 130, 90 (2015)

    Article  Google Scholar 

  38. Hughes, D.W., Rosner, R., Weiss, N.O.: The Solar Tachocline. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  39. ESA, Helio- and Asteroseismology: Towards a golden future. In: Proceedings of the SOHO 14/GONG 2004 Workshop, Pub. ESA (2004)

  40. Christensen-Dalsgaard, J.: Helioseismology. Rev. Mod. Phys. 74, 1073–1129 (2002)

    Article  ADS  Google Scholar 

  41. Bahcall, J.N.: Neutrino Astrophysics. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  42. Turck-Chièze, S.: The standard solar model and beyond. J. Phys. Conf. Ser. 665, 012078 (2016)

    Article  Google Scholar 

  43. Binney, J., Tremaine, S.: Galactic Dynamics. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  44. Sofue, Y., Rubin, V.: Rotation curves of spiral galaxies. Ann. Rev. Astron. Astrophys. 39, 137 (2001)

    Article  ADS  Google Scholar 

  45. Iocco, F., Pato, M., Bertone, G.: Evidence for dark matter in the inner Milky Way. Nat. Phys. 11, 245–248 (2015)

    Article  Google Scholar 

  46. Eadie, G.M., Harris, W.E.: Bayesian mass estimates of the Milky Way: the dark and light sides of parameter assumptions. Astrophys. J. 829, 108 (2016)

    Article  ADS  Google Scholar 

  47. McMillan, P.J.: Mass models of the Milky Way. Mon. Not. R. Astron. Soc. 414, 2446 (2011)

    Article  ADS  Google Scholar 

  48. Gerhard, O.: Mass distribution in our Galaxy. Space Sci. Rev. 100, 129–138 (2002)

    Article  ADS  Google Scholar 

  49. Carignan, C., et al.: The extended H I rotation curve and mass distribution of M31. Astrophys. J. Lett. 641, L109–L112 (2006)

    Article  ADS  Google Scholar 

  50. Strigari, L.E.: Galactic searches for dark matter. Phys. Rep. 531, 1 (2013)

    Article  ADS  Google Scholar 

  51. Tully, R.B., Fisher, J.R.: A new method of determining distances to galaxies. Astron. Astrophys. 54, 661–673 (1977)

    ADS  Google Scholar 

  52. McGaugh, S.S., Lelli, F., Schombert, J.M.: Radial acceleration relation in rotationally supported galaxies. Phys. Rev. Lett. 117, 201101 (2016)

    Article  ADS  Google Scholar 

  53. Tully, R.B., et al.: The Laniakea supercluster of galaxies. Nature 513, 71 (2014)

    Article  ADS  Google Scholar 

  54. Volovik, G.E.: The Universe in a Helium Droplet. Clarendon Press, Oxford (2003)

    MATH  Google Scholar 

  55. Tartaglia, A.: Relativistic space-time positioning: principles and strategies. Acta Fut. 7, 111–124 (2013)

    Google Scholar 

  56. Tartaglia, A., Ruggiero, M.L., Capolongo, E.: A null frame for spacetime positioning by means of pulsating sources. Adv. Space Res. 47, 645–653 (2011)

    Article  ADS  Google Scholar 

  57. Ruggiero, M.L., Capolongo, E., Tartaglia, A.: Pulsars as celestial beacons to detect the motion of the Earth. Int. J. Mod. Phys. D 20, 1025–1038 (2011)

    Article  ADS  MATH  Google Scholar 

  58. Szebehely, V.: Theory of Orbits—The Restricted Problem of Three Bodies. Academic Press, London (1967)

    MATH  Google Scholar 

  59. Richardson, D.L.: Analytic construction of periodic orbits about the collinear points. Celest. Mech. Dyn. Astron. 22, 241–253 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  60. Celletti, A., Pucacco, G., Stella, D.: Lissajous and Halo orbits in the restricted three-body problem. J. Nonlinear Sci. 25, 343–370 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Páez, R., Locatelli, U.: Trojan dynamics well approximated by a new Hamiltonian normal form. Mon. Not. R. Acad. Sci. 453, 2177–2188 (2015)

    Article  ADS  Google Scholar 

  62. Páez, R., Locatelli, U., Efthymiopoulos, C.: New Hamiltonian expansions adapted to the Trojan problem. Celest. Mech. Dyn. Astron. 126, 519–541 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  63. Allan, D.W., et al.: Standard terminology for fundamental frequency and time metrology. In: Proceedings of the 42nd Annual Frequency Control Symposium, Baltimore, MD, 1–4 June, pp. 419–425 (1988)

  64. Abbate, S.F. et al.: The Cassini gravitational wave experiment. In: SPIE Annual Meeting, Hawaii (2002)

  65. Sun, K.-S., et al.: Sagnac interferometer for gravitational-wave detection. Phys. Rev. Lett. 76, 3053–3056 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tartaglia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tartaglia, A., Lorenzini, E.C., Lucchesi, D. et al. How to use the Sun–Earth Lagrange points for fundamental physics and navigation. Gen Relativ Gravit 50, 9 (2018). https://doi.org/10.1007/s10714-017-2332-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-017-2332-6

Keywords

Navigation