Skip to main content
Log in

On the space of solutions of the Hořava theory at the kinetic-conformal point

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The nonprojectable Hořava theory at the kinetic-conformal point is defined by setting a specific value of the coupling constant of the kinetic term of the Lagrangian. This formulation has two additional second class-constraints that eliminate the extra mode. We show that the space of solutions of this theory in the Hamiltonian formalism is bigger than the space of solutions in the original Lagrangian formalism. In the Hamiltonian formalism there are certain configurations for the Lagrange multipliers that lead to solutions that cannot be found in the original Lagrangian formulation. We show specific examples in vacuum and with a source. The solution with the source has homogeneous and isotropic spatial hypersurfaces. The enhancement of the space of solutions leaves the possibility that new solutions applicable to cosmology, or to other physical systems, can be found in the Hamiltonian formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In Hořava theory, the vacuum spherically symmetric solutions do not possess the uniqueness properties that they have in GR.

  2. In the case of this toy model the Eq. (2.8) for \(\sigma \) and (2.11) for A result to be the same, but even in this case the solutions for \(\sigma \) and A do not need to be the same.

References

  1. Hořava, P.: Quantum gravity at a Lifshitz point. Phys. Rev. D 79, 084008 (2009). arXiv:0901.3775 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  2. Stelle, K.S.: Renormalization of higher derivative quantum gravity. Phys. Rev. D 16, 953 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  3. Blas, D., Pujolàs, O., Sibiryakov, S.: Consistent extension of Hořava gravity. Phys. Rev. Lett. 104, 181302 (2010). arXiv:0909.3525 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  4. Bellorín, J., Restuccia, A., Sotomayor, A.: A consistent Hořava gravity without extra modes and equivalent to general relativity at the linearized level. Phys. Rev. D 87, 084020 (2013). arXiv:1302.1357 [hep-th]

    Article  ADS  Google Scholar 

  5. Bellorín, J., Restuccia, A.: Quantization of the Hořava theory at the kinetic-conformal point. Phys. Rev. D 94, 064041 (2016). arXiv:1606.02606 [hep-th]

    Article  ADS  Google Scholar 

  6. Wang, A.: Hořava gravity at a Lifshitz point: a progress report. Int. J. Mod. Phys. D 26, 1730014 (2017). arXiv:1701.06087 [gr-qc]

    Article  ADS  MATH  Google Scholar 

  7. Dirac, P.A.M.: Lectures on Quantum Mechanics. Belfer Graduate School of Science, Yeshiva University, New York (1964)

    MATH  Google Scholar 

  8. Jacobson, T., Mattingly, D.: Gravity with a dynamical preferred frame. Phys. Rev. D 64, 024028 (2001). arXiv:gr-qc/0007031 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  9. Mattingly, D., Jacobson, T.: Relativistic gravity with a dynamical preferred frame. In: Alan Kostelecky, V. (ed.) Proceedings of the Second Meeting on CPT and Lorentz Symmetry. World Scientific, Singapore (2002). arXiv:gr-qc/0112012 [gr-qc]

    Google Scholar 

  10. Carroll, S.M., Lim, E.A.: Lorentz-violating vector fields slow the universe down. Phys. Rev. D 70, 123525 (2004). [arXiv:hep-th/0407149 [hep-th]]

    Article  ADS  Google Scholar 

  11. Jacobson, T.: Einstein-aether gravity: a status report. PoS QG–PH, 020 (2007). arXiv:0801.1547 [gr-qc]

    Google Scholar 

  12. Blas, D., Pujolàs, O., Sibiryakov, S.: Comment on ‘Strong coupling in extended Hořava–Lifshitz gravity’. Phys. Lett. B 688, 350–355 (2010). arXiv:0912.0550 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  13. Jacobson, T.: Extended Hořava gravity and Einstein-aether theory. Phys. Rev. D 81, 101502 (2010). arXiv:1001.4823 [hep-th] [Erratum-ibid. D 82, 129901 (2010)]

  14. Jacobson, T.: Undoing the twist: the Hořava limit of Einstein-aether theory. Phys. Rev. D 89, 081501 (2014). arXiv:1310.5115 [gr-qc]

    Article  ADS  Google Scholar 

  15. Audren, B., Blas, D., Ivanov, M.M., Lesgourgues, J., Sibiryakov, S.: Cosmological constraints on deviations from Lorentz invariance in gravity and dark matter. JCAP 1503, 016 (2015). arXiv:1410.6514 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  16. Eling, C., Jacobson, T.: Spherical solutions in Einstein-aether theory: static aether and stars. Class. Quantum Gravity 23, 5625 (2006). arXiv:gr-qc/0603058 [gr-qc] [Erratum-ibid. 27 049801 (2010)]

  17. Kiritsis, E.: Spherically symmetric solutions in modified Hořava–Lifshitz gravity. Phys. Rev. D 81, 044009 (2010). arXiv:0911.3164 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  18. Bellorín, J., Restuccia, A., Sotomayor, A.: Wormholes and naked singularities in the complete Hořava theory. Phys. Rev. D 90, 044009 (2014). arXiv:1404.2884 [gr-qc]

    Article  ADS  Google Scholar 

  19. Bellorín, J., Restuccia, A., Sotomayor, A.: Solutions with throats in Hořava gravity with cosmological constant. Int. J. Mod. Phys. D 25, 1650016 (2015). arXiv:1501.04568 [gr-qc]

    Article  ADS  MATH  Google Scholar 

  20. Barausse, E., Jacobson, T., Sotiriou, T.P.: Black holes in Einstein-aether and Hořava–Lifshitz gravity. Phys. Rev. D 83, 124043 (2011). arXiv:1104.2889 [gr-qc]

    Article  ADS  Google Scholar 

  21. Blas, D., Sibiryakov, S.: Hořava gravity versus thermodynamics: the black hole case. Phys. Rev. D 84, 124043 (2011). arXiv:1110.2195 [hep-th]

    Article  ADS  Google Scholar 

  22. Barausse, E., Sotiriou, T.P.: Black holes in Lorentz-violating gravity theories. Class. Quantum Gravity 30, 244010 (2013). arXiv:1307.3359 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Cropp, B., Liberati, S., Mohd, A., Visser, M.: Ray tracing Einstein-Æther black holes: universal versus Killing horizons. Phys. Rev. D 89, 064061 (2014). arXiv:1312.0405 [gr-qc]

    Article  ADS  Google Scholar 

  24. Lin, K., Abdalla, E., Cai, R.G., Wang, A.: Universal horizons and black holes in gravitational theories with broken Lorentz symmetry. Int. J. Mod. Phys. D 23, 1443004 (2014). arXiv:1408.5976 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Berglund, P., Bhattacharyya, J., Mattingly, D.: Towards thermodynamics of universal horizons in Einstein-æther theory. Phys. Rev. Lett. 110(7), 071301 (2013). arXiv:1210.4940 [hep-th]

    Article  ADS  Google Scholar 

  26. Saravani, M., Afshordi, N., Mann, R.B.: Dynamical emergence of universal horizons during the formation of black holes. Phys. Rev. D 89(8), 084029 (2014). arXiv:1310.4143 [gr-qc]

    Article  ADS  Google Scholar 

  27. Janiszewski, S.: Asymptotically hyperbolic black holes in Hořava gravity. JHEP 1501, 018 (2015). arXiv:1401.1463 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  28. Lin, K., Shu, F.W., Wang, A., Wu, Q.: High-dimensional Lifshitz-type spacetimes, universal horizons, and black holes in Hořava–Lifshitz gravity. Phys. Rev. D 91(4), 044003 (2015). arXiv:1404.3413 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  29. Eling, C., Oz, Y.: Hořava–Lifshitz black hole hydrodynamics. JHEP 1411, 067 (2014). arXiv:1408.0268 [hep-th]

    Article  ADS  MATH  Google Scholar 

  30. Lin, K., Goldoni, O., da Silva, M.F., Wang, A.: New look at black holes: existence of universal horizons. Phys. Rev. D 91(2), 024047 (2015). arXiv:1410.6678 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  31. Barausse, E., Sotiriou, T.P.: Slowly rotating black holes in Horava–Lifshitz gravity. Phys. Rev. D 87, 087504 (2013). arXiv:1212.1334 [gr-qc]

    Article  ADS  Google Scholar 

  32. Wang, A.: Stationary axisymmetric and slowly rotating spacetimes in Hořava–Lifshitz gravity. Phys. Rev. Lett. 110, 091101 (2013). arXiv:1212.1876 [hep-th]

    Article  ADS  Google Scholar 

  33. Pacilio, C., Liberati, S.: Improved derivation of the Smarr formula for Lorentz-breaking gravity. Phys. Rev. D 95, 124010 (2017). arXiv:1701.04992 [gr-qc]

    Article  ADS  Google Scholar 

  34. Li, B.F., Bhattacharjee, M., Wang, A.: Universal horizons and Hawking radiation in nonprojectable 2d Hořava gravity coupled with a non-relativistic scalar field. arXiv:1703.08207 [gr-qc]

Download references

Acknowledgements

A. R. is partially supported by Grant Fondecyt No. 1161192, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Bellorín.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellorín, J., Restuccia, A. On the space of solutions of the Hořava theory at the kinetic-conformal point. Gen Relativ Gravit 49, 132 (2017). https://doi.org/10.1007/s10714-017-2298-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-017-2298-4

Keywords

Navigation