Skip to main content
Log in

Papapetrou field as the gravitoelectromagnetic field tensor in stationary spacetimes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Introducing the well known Papapetrou field as the gravitoelectromagnetic field tensor, we express the Maxwell-type part of the 3-dimensional quasi-Maxwell form of the Einstein field equations in terms of differential forms, analogous to their electromagnetic counterparts in curved spacetimes. Using the same formalism we introduce the junction conditions on non-null hypersurfaces in terms of the introduced gravitoelectromagnetic 4-vector fields and apply them to the case of the Van Stockum interior and exterior solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here for simplicity we restrict our attention to the vacuum case while generalization to the non-vacuum case are given in “Appendix 1”.

  2. It should be noted that the curl and divergence operators are defined in the 3-space \(\Sigma _3\) with metric \(\gamma _{\alpha \beta }\) in the following way;

    $$\begin{aligned} div\mathbf V =\frac{1}{\sqrt{\gamma }}~ \frac{\partial }{\partial {x^\alpha }}(\sqrt{\gamma }~V^\alpha ),\quad (curl\mathbf V )^\alpha =\frac{1}{2\sqrt{\gamma }}~\epsilon ^{\alpha \beta \gamma } \left( \frac{\partial {V_\gamma }}{\partial {x^\beta }} -\frac{\partial {V_\beta }}{\partial {x^\gamma }}\right) . \end{aligned}$$

    Also it is noted that the first two Eqs. (11)–(12) are direct consequences of our definitions of GE and GM fields and the original ten field equations are now given by Eqs. (13)–(15).

  3. Two points need to be emphasized here with respect to the quasi-Maxwell form of the Einstein field equations. The first point is the obvious fact that in terms of the GE and GM fields, Eqs. (13)–(15) are nonlinear. As a second point, it should be noted that since the GE and GM fields are 3-vectors living in \(\Sigma _3\), the above formulation is not a manifestly covariant formulation and indeed it was not meant to be so due to the idea of decomposition.

  4. It should be noted that the Papapetrou field could be defined for non-null Killing vectors [22], but here we are interested in TKVF as their existence characterizes stationary spacetimes.

  5. In the formalism based on the normalized vector \(\frac{\xi ^a}{|\xi |}\) the GM intensity vector \(H_g\) is defined so that it is twice the vorticity of the Killing observers [6].

  6. Note that here the intrinsic coordinates of the hypersurface are denoted by the middle Latin indices \((i,j,\ldots )\).

  7. It is called the formal three dimensional analogue because neither the \(\Sigma _3\) space is a hypersurface of the underlying manifold nor the spatial components of the normal to the boundary hypersurface necessarily constitute a normal vector to \(\Sigma _3\).

  8. It should be noted that in the study carried out in [36], the GEM formalism and quasi-Maxwell equations are only treated in the weak field limit of the Kerr black hole.

References

  1. Landau, L.D., Lifshitz, E.M.: Classical Theory of Fields, 4th edn. Pergamon Press, Oxford (1975)

    MATH  Google Scholar 

  2. Zelmanov, A.: Chronometric Invariants: on deformations and the curvature of accompanying space, Dissertation, Translated from the Russian and edited by Dmitri Rabounski and Stephen J. Crothers, American Research Press (2006)

  3. Cattaneo, C.: Il Nuovo Cimento 10(2), 318–337 (1958)

    Article  MathSciNet  Google Scholar 

  4. Cattaneo, C.: Il Nuovo Cimento 11(5), 733–735 (1959)

    Article  Google Scholar 

  5. Lynden-Bell, D., Nouri-Zonoz, M.: Rev. Mod. Phys. 70(2), 427–445 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  6. Jantzen, R., Carini, P., Bini, D.: Ann. Phys. 215, 1 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  7. Nouri-Zonoz, M., Tavanfar, A.R.: J. High Energy Phys. 59 (2003). 10.1088/1126-6708/2003/02/059

  8. de Felice, F., Bini, D.: Classical Measurements in Curved Space Time. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  9. Costa, L., Natario, J.: Gen. Relativ. Gravit. 46, 1792 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  10. Mashhoon, B.: Gravitoelectromagnetism. In: Pascual-Sánchez, J.-F. et al (eds.) Proc. Spanish Relativity Meeting. World Scientific (2001). arXiv:gr-qc/0011014

  11. Bini, D., Chicone, C., Mashhoon, B.: Phys. Rev. D 85, 104020 (2012)

    Article  ADS  Google Scholar 

  12. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W. H. Freeman and Company, San Francisco (1973)

    Google Scholar 

  13. Nouri-Zonoz, M.: Class. Quantum Grav. 14, 3123 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  14. Momeni, D., Nouri-Zonoz, M., Ramezani-Arani, R.: Phys. Rev. D 72, 064023 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  15. Nouri-Zonoz, M., Tavanfar, A.R.: Class. Quantum Grav. 18, 4293 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  16. Bertschinger, E.: Cosmological Dynamics, Les Houches Summer School Lectures on Cosmology. arXiv:astro-ph/9503125 (1995)

  17. Nouri-Zonoz, M.: Phys. Rev. D 60, 024013 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  18. Nouri-Zonoz, M., Nazari, B.: Phys. Rev. D 82, 044047 (2010)

    Article  ADS  Google Scholar 

  19. Nouri-Zonoz, M., Nazari, B.: Phys. Rev. D 85, 044060 (2012)

    Article  ADS  Google Scholar 

  20. Nouri-Zonoz, M., Parvizi, A.: Phys. Rev. D 88, 023004 (2013)

    Article  ADS  Google Scholar 

  21. Papapetrou, A.: Ann. Inst. Henri Poincaré A4, 83 (1966)

    ADS  Google Scholar 

  22. Fayos, F., Sopuerta, C.F.: Class. Quantum Grav. 16, 2965 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  23. Stephani, H., et al.: Exact Solutions of Einstein’s Field Equations. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  24. Geroch, R.: J. Math. Phys. 12, 918 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  25. Nouri-Zonoz, M., Koohbor, J., Ramezani-Aval, H.: Phys. Rev. D 91, 063010 (2015)

    Article  ADS  Google Scholar 

  26. Nouri-Zonoz, M.: Ph.D. thesis, University of Cambridge (1998)

  27. Nakahara, M.: Geometry, Topology and Physics, 2nd edn. Taylor and Francis Group, London (2003)

    MATH  Google Scholar 

  28. Darmois, G.: Mémorial de Sciences Mathematiques, Fasc. 25 (Gauthier-Villars, Paris) (1927)

  29. O’Brien, S., Synge, J.L.: Commun. Dublin Inst. Adv. Stud. A, no. 9. ISSN: 0070-7414 (1952)

  30. Lichnerowicz, A.: Theories relativistes de la gravitation et de l’électromagnétisme. Masson, Paris (1955)

    MATH  Google Scholar 

  31. Israel, W.: Nuovo Cimento B 44, 1 (1966)

    Article  ADS  Google Scholar 

  32. Poisson, E.: A Relativist’s Toolkit. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  33. Van Stockum, W.J.: Proc. R. Soc. Edinb. A 57, 135 (1937)

    Article  Google Scholar 

  34. Bonnor, W.B.: J. Phys. A Math. Gen. 13, 2121–2132 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  35. Mena, F.C., Natario, J.: J. Geom. Phys. 59, 448–458 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  36. Thorne, K.S., Price, R.H., Macdonald, D.A. (eds.) Black Holes: The Membrane Paradigm. Yale University Press, Rockwell Intl., Anaheim, New Haven (1986)

  37. Parikh, M., Wilczek, F.: Phys. Rev. D 58, 064011 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  38. Nouri-Zonoz, M., Parvizi, A.: Work in progress

Download references

Acknowledgments

The authors would like to thank University of Tehran for supporting this project under the grants provided by the research council. M. N.-Z. also thanks H. Ramezani-Aval for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nouri-Zonoz.

Appendices

Appendix 1: Calculation of the inhomogeneous quasi-Maxwell equations in terms of the GEM field tensor

In Sect. 3 we gave an expression for the quasi-Maxwell form of the Einstein field equations in terms of the GEM field tensor in the coordinate system adapted to the TKVF. Here we find the 3-dimensional inhomogeneous quasi-Maxwell equations introduced in Sect. 2, starting with Eq. (33),

$$\begin{aligned} \nabla _a {F_g}^{ab}= -16 \pi J^b. \end{aligned}$$
(69)

and for a perfect fluid whose 4-current is given by

$$\begin{aligned}&J^b= \left( T^{ab}-\frac{1}{2} T g^{ab}\right) \xi _a = \left( \frac{p + \rho }{1-v^2}(1+\sqrt{h}{A_g}_{\alpha }v^\alpha ) -\frac{\rho - p}{2}, \mathbf{J}\right) ,\nonumber \\&\mathbf{J}=\sqrt{h}\frac{p+\rho }{1-v^2}{} \mathbf{v} \end{aligned}$$
(70)

First we consider the spatial components of the 4-current so that ,

$$\begin{aligned} \nabla _a {F_g}^{a\beta }&= -16 \pi J^\beta \\&= \frac{1}{\sqrt{h} \sqrt{\gamma }}\dfrac{\partial }{\partial x^{a}} \left( \sqrt{h} \sqrt{\gamma } {F_g}^{a \beta }\right) \\&= \frac{1}{\sqrt{h} \sqrt{\gamma }}\dfrac{\partial }{\partial x^{\alpha }} \left( \sqrt{h} \sqrt{\gamma } (-h f^{\alpha \beta })\right) \end{aligned}$$

using \( f_{\alpha \beta }= \sqrt{\gamma } e_{\alpha \beta \gamma } {B_g}^{\gamma }\) yields

$$\begin{aligned} \nabla _a {F_g}^{a\beta }&= - 16\pi J^\beta \\&= - \frac{1}{\sqrt{h} \sqrt{\gamma }}\dfrac{\partial }{\partial x^{\alpha }} \left( h^{3/2} e^{\alpha \beta \gamma } {B_g}_{\gamma }\right) \\&= \frac{3h}{\sqrt{\gamma }} {E_g}_{\alpha } {B_g}_{\gamma } e^{\alpha \beta \gamma }- \frac{h}{\sqrt{\gamma }} e^{\alpha \beta \gamma } \left( \dfrac{\partial }{\partial x^{\alpha }} {B_g}_{\gamma }\right) \\&= -\sqrt{h}\left( 2\mathbf {E} _g \times \sqrt{h}{} \mathbf {B} _g^{\beta }-(\nabla \times \sqrt{h}{} \mathbf {B} _g)^{\beta }\right) \end{aligned}$$

from which we obtain the following quasi-Maxwell equation in the three-space \( \Sigma _3 \)

$$\begin{aligned} \nabla \times (\sqrt{h}{} \mathbf {B} _g)= 2 \mathbf {E} _g \times \sqrt{h}{} \mathbf {B} _g - 16\pi \frac{p+\rho }{1-v^2}\mathbf{v}. \end{aligned}$$
(71)

Now we turn our attention to the temporal component of the equation, i.e.

$$\begin{aligned} \nabla _a {F_g}^{a0}= -16 \pi J^0, \end{aligned}$$
(72)

which could be written as follows,

$$\begin{aligned} \nabla _{\alpha } {F_g}^{\alpha 0}= \frac{1}{\sqrt{h} \sqrt{\gamma }}\dfrac{\partial }{\partial x^{\alpha }} \left( \sqrt{h} \sqrt{\gamma } {F_g}^{\alpha 0}\right) = -16 \pi J^0. \end{aligned}$$

Writing the GEM field tensor in terms of the GEM vector fields, for the LHS we have,

$$\begin{aligned} \nabla _{\alpha } {F_g}^{\alpha 0}\!=\! \frac{2}{\sqrt{\gamma }}\dfrac{\partial }{\partial x^{\alpha }} \left( \sqrt{\gamma } {E_g}^{\alpha }\right) - \frac{h}{\sqrt{\gamma }}\dfrac{\partial }{\partial x^{\alpha }} [\sqrt{\gamma } (\mathbf A _g \times \mathbf B _g)^{\alpha }]\,{-}\,[2{E_g}^{\alpha }-3h(\mathbf A _g \times \mathbf {B} _g)^{\alpha }]{E_g}_{\alpha } \end{aligned}$$
(73)

in which for the second term in the right hand side we have

$$\begin{aligned} \frac{h}{\sqrt{\gamma }}\dfrac{\partial }{\partial x^{\alpha }} [\sqrt{\gamma } (\mathbf A _g \times \mathbf {B} _g)^{\alpha }]= h {B_g}^2-h \mathbf A _g \cdot (\nabla \times \mathbf {B} _g) \end{aligned}$$

so that we end up with

$$\begin{aligned} \nabla _{\alpha }{F_g}^{\alpha 0}&\!=\!2 \nabla \cdot {E_g}-2{E_g}^2-h{B_g}^2\!+\!h \mathbf A _g \cdot (\nabla \!\times \! \mathbf {B} _g)\!+\!3h \mathbf {E} _g \cdot (\mathbf A _g \!\times \! \mathbf {B} _g)\!=\!-16 \pi J^0. \end{aligned}$$
(74)

After making use of the Eq. (71) and substituting for \(J^0\) from (70), we end up with the desired result

$$\begin{aligned} \nabla \cdot \mathbf {E} _g={E_g}^2+\frac{1}{2}h{B_g}^2 - 8\pi \left( \frac{p+\rho }{1-v^2} - \frac{\rho - p}{2} \right) . \end{aligned}$$

which is the other inhomogeneous quasi-Maxwell equation.

Appendix 2: Calculation of the extrinsic curvature in terms of the GEM fields

Before proceeding with the calculation of the jump in the extrinsic curvature of the boundary hypersurface, it should be noted that the following calculations are made in a gauge in which \(A_{\alpha ;\beta }+A_{\beta ;\alpha }=0\). This is due to the fact that the combination \(A_{\alpha ;\beta }+A_{\beta ;\alpha }\) is not an invariant under the gauge transformation \( {A_g}_\alpha \rightarrow {A_g}_\alpha + \partial _{\alpha }f \) representing the freedom in choosing the time origin (3), where it is known that all the 3-dimensional objects are scalars under the spacetime transformations [1].

We begin by writing all the connection coefficients in terms of the GEM 3-vector fields and then show that the two expressions (42) and (43) are equivalent in the coordinate system adapted to the TKVF and so being 3-tensorial relation on the hypersurface they are equal in all coordinate systems.

In terms of the metric components, the connection coefficients for a stationary spacetime (in the coordinate system adapted to the TKVF) are given by [1],

$$\begin{aligned} \Gamma ^{0}_{00}\doteq & {} \frac{1}{2}{A_g}^\alpha h_{,\alpha }\nonumber \\ \Gamma ^{0}_{\alpha 0}\doteq & {} \frac{h_{,\alpha }}{2h}+\frac{h}{2}{A_g}^{\beta }f_{\alpha \beta } -\frac{1}{2}{A_g}_\alpha {A_g}_\lambda h^{,\lambda }\nonumber \\ \Gamma ^{0}_{\alpha \beta }\doteq & {} -\frac{1}{2}\left( {A_g}_{\alpha ,\beta }+{A_g}_{\beta ,\alpha }\right) -\frac{1}{2h}({A_g}_{\alpha }h_{,\beta }+{A_g}_{\beta }h_{,\alpha })\nonumber \\&+\,{A_g}_{\delta }\lambda ^{\delta }_{\alpha \beta } +\frac{1}{2}{A_g}_{\alpha }{A_g}_{\beta }{A_g}_{\delta }h^{,\delta } -\frac{h}{2}{A_g}^\lambda ({A_g}_{\alpha }f_{\beta \lambda } +{A_g}_{\beta }f_{\alpha \lambda })\nonumber \\ \Gamma ^{\alpha }_{00}\doteq & {} \frac{1}{2} h^{,\alpha }\nonumber \\ \Gamma ^{\alpha }_{0\beta }\doteq & {} \frac{h}{2}f_{\beta }^{\alpha }-\frac{1}{2}{A_g}_{\beta }h^{,\alpha }\nonumber \\ \Gamma ^{\alpha }_{\beta \gamma }\doteq & {} \lambda ^{\alpha }_{\beta \gamma }-\frac{h}{2}\left( {A_g}_{\beta }f_{\gamma }^{\alpha } +{A_g}_{\gamma }f_{\beta }^{\alpha }\right) +\frac{1}{2}{A_g}_{\beta }{A_g}_{\gamma }h^{,\alpha } \end{aligned}$$
(75)

Rewriting the above equations in terms of the GEM 3-vector fields, they are given as follows,

$$\begin{aligned} \Gamma ^{0}_{00}\doteq & {} -\,h {A_g}^\alpha {E_g}_\alpha \nonumber \\ \Gamma ^{0}_{\alpha 0}\doteq & {} -{E_g}_{\alpha }+\frac{h}{2}\sqrt{\gamma }{A_g}^{\beta } \epsilon _{\alpha \beta \gamma }{B_g}^{\gamma } +h{A_g}_{\alpha }{A_g}^{\lambda }{E_g}_{\lambda }\nonumber \\ \Gamma ^{0}_{\alpha \beta }\doteq & {} \left( {A_g}_{\alpha }{E_g}_{\beta }+{A_g}_{\beta }{E_g}_{\alpha }\right) \nonumber \\&-\,h{A_g}_{\alpha }{A_g}_{\beta }{A_g}^{\lambda }{E_g}_{\lambda } -\frac{h}{2}{A_g}^{\gamma }\left( {A_g}_{\alpha }\sqrt{\gamma } \epsilon _{\beta \gamma \lambda }{B_g}^{\lambda }+{A_g}_{\beta }\sqrt{\gamma } \epsilon _{\alpha \gamma \lambda }{B_g}^{\lambda }\right) \nonumber \\ \Gamma ^{\alpha }_{00}\doteq & {} -\,h\gamma ^{\alpha \beta }{E_g}_\beta \nonumber \\ \Gamma ^{\alpha }_{0\beta }\doteq & {} \frac{h}{2}\sqrt{\gamma }{\epsilon _{\beta }^{\alpha }}_{\gamma }{B_g}^{\gamma } +h{A_g}_{\beta }\gamma ^{\alpha \lambda }{E_g}_{\lambda }\nonumber \\ \Gamma ^{\alpha }_{\beta \gamma }\doteq & {} \lambda ^{\alpha }_{\beta \gamma }-\frac{h}{2} \left( {A_g}_{\beta }\sqrt{\gamma }{\epsilon _{\gamma }^{\alpha }}_{\lambda }{B_g}^{\lambda } +{A_g}_{\gamma }\sqrt{\gamma }{\epsilon _{\beta }^{\alpha }}_{\lambda }{B_g}^{\lambda }\right) -h{A_g}_{\beta }{A_g}_{\gamma }\gamma ^{\alpha \lambda }{E_g}_{\lambda } \end{aligned}$$
(76)

Now what we need, is to show that the following relations hold between the connection coefficients and the components of the tensor \(P^a_{bc}\),

$$\begin{aligned} -\Gamma ^{0}_{00}= & {} P^0_{00}; \quad -\Gamma ^{0}_{\alpha 0}=P^0_{\alpha 0}\nonumber \\ -\Gamma ^{0}_{\alpha \beta }= & {} P^{0}_{\alpha \beta }; \quad -\Gamma ^{\alpha }_{00}=P^{\alpha }_{00}\nonumber \\ -\Gamma ^{\alpha }_{0\beta }= & {} P^{\alpha }_{0\beta }; \quad -\Gamma ^{\alpha }_{\beta \gamma }+\lambda ^{\alpha }_{\beta \gamma } =P^{\alpha }_{\beta \gamma }. \end{aligned}$$
(77)

This could be achieved by calculating the components of \(P^a_{bc}\) in the coordinate system adapted to the timelike Killing vector as follows,

$$\begin{aligned} P^0_{00}\doteq & {} \frac{1}{h}{E_g}^0\xi _0\xi _0+\frac{1}{h}\left( -{E_g}_0^{0}\xi _0\right) =h {A_g}^\alpha {E_g}_\alpha \nonumber \\ P^0_{\alpha 0}\doteq & {} \frac{1}{h}{E_g}^0\xi _\alpha \xi _0+\frac{1}{2h}\left( -{F_g}_\alpha ^{0}\xi _0 -{F_g}_0^{0}\xi _\alpha \right) \nonumber \\= & {} {E_g}_{\alpha } -h{A_g}_{\alpha }{A_g}^{\beta }{E_g}_\beta -\frac{1}{2}h\sqrt{\gamma }{A_g}^{\beta }\epsilon _{\alpha \beta \lambda }{B_g}^{\lambda }\nonumber \\ P^{\alpha }_{00}\doteq & {} \frac{1}{h}{E_g}^{\alpha }\xi _0\xi _0+\frac{1}{h}\left( -{F_g}_0^{\alpha }\xi _0\right) =h\gamma ^{\alpha \beta }{E_g}_\beta \nonumber \\ P^{\alpha }_{\beta 0}\doteq & {} \frac{1}{h}{E_g}^{\alpha }\xi _\beta \xi _0+\frac{1}{2h} \left( -{F_g}_\beta ^{\alpha }\xi _0-{F_g}_0^{\alpha }\xi _\beta \right) \nonumber \\= & {} -{A_g}_{\beta }\gamma ^{\alpha \lambda }{E_g}_\lambda -\frac{1}{2}h\sqrt{\gamma }{\epsilon _{\beta }^{\alpha }}_{\gamma }{B_g}^{\gamma }\nonumber \\ P^{0}_{\alpha \beta }\doteq & {} \frac{1}{h}{E_g}^0\xi _\alpha \xi _\beta +\frac{1}{2h} \left( -{F_g}_\alpha ^{0}\xi _\beta -{F_g}_\beta ^{0}\xi _\alpha \right) \nonumber \\= & {} -\,\left( {A_g}_{\alpha }{E_g}_{\beta }+{A_g}_{\beta }{E_g}_{\alpha }\right) +h{A_g}_{\alpha }{A_g}_{\beta }{A_g}^{\lambda }{E_g}_{\lambda }\nonumber \\&+\,\frac{h}{2}{A_g}^{\gamma }\left( {A_g}_{\alpha }\sqrt{\gamma } \epsilon _{\beta \gamma \lambda }{B_g}^{\lambda }+{A_g}_{\beta }\sqrt{\gamma } \epsilon _{\alpha \gamma \lambda }{B_g}^{\lambda }\right) \nonumber \\ P^{\alpha }_{\beta \gamma }\doteq & {} \frac{1}{h}{E_g}^{\alpha }\xi _{\beta }\xi _\gamma +\frac{1}{2h} \left( -{F_g}_\beta ^{\alpha }\xi _\gamma -{F_g}_\gamma ^{\alpha }\xi _\beta \right) \nonumber \\= & {} \frac{h}{2}\left( {A_g}_{\beta }\sqrt{\gamma } {\epsilon _{\gamma }^{\alpha }}_{\lambda }{B_g}^{\lambda }+{A_g}_{\gamma } \sqrt{\gamma }{\epsilon _{\beta }^{\alpha }}_{\lambda } {B_g}^{\lambda }\right) +h{A_g}_{\beta }{A_g}_{\gamma } \gamma ^{\alpha \lambda }{E_g}_{\lambda } \end{aligned}$$
(78)

comparing the above relations with those in \((\mathrm{B}2)\) shows that the relations given in \((\mathrm{B}3)\) are satisfied in the coordinate system adapted to the TKVF.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouri-Zonoz, M., Parvizi, A. Papapetrou field as the gravitoelectromagnetic field tensor in stationary spacetimes. Gen Relativ Gravit 48, 37 (2016). https://doi.org/10.1007/s10714-016-2032-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-016-2032-7

Keywords

Navigation