Skip to main content
Log in

Electrodynamics on cosmological scales

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Maxwell’s equations cannot describe a homogeneous and isotropic universe with a uniformly distributed net charge, because the electromagnetic field tensor in such a universe must be vanishing everywhere. For a closed universe with a nonzero net charge, Maxwell’s equations always fail regardless of the spacetime symmetry and the charge distribution. The two paradoxes indicate that Maxwell’s equations need be modified to be applicable to the universe as a whole. We consider two types of modified Maxwell equations, both can address the paradoxes. One is the Proca-type equation which contains a photon mass term. This type of electromagnetic field equations can naturally arise from spontaneous symmetry breaking and the Higgs mechanism in quantum field theory, where photons acquire a mass by eating massless Goldstone bosons. However, photons loose their mass again when the symmetry is restored, and the paradoxes reappear. The other type of modified Maxwell equations, which are more attractive in our opinions, contain a term with the electromagnetic field potential vector coupled to the spacetime curvature tensor. This type of electromagnetic field equations do not introduce a new dimensional parameter and return to Maxwell’s equations in a flat or Ricci-flat spacetime. We show that the curvature-coupled term can naturally arise from the ambiguity in extending Maxwell’s equations from a flat spacetime to a curved spacetime through the “minimal substitution rule”. Some consequences of the modified Maxwell equations are investigated. The results show that for reasonable parameters the modification does not affect existing experiments and observations. However, we argue that, the field equations with a curvature-coupled term can be testable in astrophysical environments where the mass density is high or the gravity of electromagnetic radiations plays a dominant role in dynamics, e.g., the interior of neutron stars and the early universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Although the dynamic equations for the evolution of and structure formation in a homogeneous and isotropic universe can formally be derived with Newton’s law of gravity and motion, it does not deny the fundamental and conceptual problems of Newton’s theory in application to the universe as a whole [18, 19]. For example, due to the fact that in Newton’s theory light travels at an infinite speed and gravity propagates instantaneously, the formulation of the Newtonian equations applies only to a region smaller than the cosmic horizon. Extension to scales comparable to and larger than the cosmic horizon must include relativistic corrections [20, 21]. In fact, once the distance is extended to cosmological scales, the definition for distance in the Newtonian equations becomes ambiguous since there are multiple and distinct definitions of distance in an expanding universe [22].

  2. According to Refs. [36] and [48], gauge invariance is not a symmetry of nature. It generates nothing that is observable. While a global symmetry gives rise to a conserved current by Noether’s theorem, the local gauge symmetry does not. Gauge invariance only provides a principle for construction of a local theory for describing massless vector particles and a tool for the convenience of computations.

  3. The distance defined by Eq. (59) does not appear to be identical to any existing distance definition in cosmology, therefore we denote it by \(D_X\).

References

  1. Thomson, W.: Macmillan’s Mag. 5, 388 (1862)

    Google Scholar 

  2. Smith, C., Wise, M.N.: Energy and Empire: A Biographical Study of Lord Kelvin. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  3. Planck, M.: Treatise on Thermodynamics, 1917th edn. Dover Publications, New York (2010)

    Google Scholar 

  4. Landsberg, P.T.: Thermodynamics with Quantum Statistical Illustrations. Interscience Publishers, New York (1961)

    MATH  Google Scholar 

  5. Grandy, W.T.: Entropy and the Time Evolution of Macroscopic Systems. Oxford University Press, Oxford (2008)

    Book  MATH  Google Scholar 

  6. Binney, J., Tremaine, S.: Galactic Dynamics. Princeton University Press, Princeton (1987)

    MATH  Google Scholar 

  7. Smolin, L.: Phys. Today 67, 38 (2014)

    Article  Google Scholar 

  8. Bekenstein, J.D.: Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  9. Bardeen, J.M., Carter, B., Hawking, S.W.: Commun. Math. Phys. 31, 161 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  10. Hawking, S.W.: Nature 248, 30 (1974)

    Article  ADS  Google Scholar 

  11. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  12. Clifton, T., Ellis, G.F.R., Tavakol, R.: Class. Quantum Gravity 30, 125009 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  13. Sussman, R.A., Larena, J.: Class. Quantum Gravity 32, 165012 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  14. Norton, J.D. In: Goenner, H., et al. (eds.) The Expanding Worlds of General Relativity: Einstein Studies, vol. 7, p. 271. Birkhäuser, Boston (1999)

  15. Neumann, C.: Abh. d. Kgl. Sächs. Ges. d. Wiss. zu Leipzig, math.-nat. KL. 26, 97 (1874). This is cited from R. C. Tolman, Relativity, Thermodynamics and Cosmology, Oxford University Press, Oxford (1962). However, see the comments in [14]

  16. Seeliger, H.: Astron. Nachr. 137, 129 (1895)

    Article  ADS  Google Scholar 

  17. Jeans, J.H.: Astronomy and Cosmogony. Cambridge University Press, Cambridge (1929)

    MATH  Google Scholar 

  18. Peebles, P.J.E.: Principles of Physical Cosmology. Princeton University Press, Princeton (1993)

    Google Scholar 

  19. Weinberg, S.: Cosmology. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  20. Green, S.R., Wald, R.M.: Phys. Rev. D 85, 063512 (2012)

    Article  ADS  Google Scholar 

  21. Flender, S.F., Schwarz, D.J.: Phys. Rev. D 86, 063527 (2012)

    Article  ADS  Google Scholar 

  22. Weinberg, S.: Gravitation and Cosmology. Wiley, New York (1972)

    Google Scholar 

  23. Einstein, A.: Seitsber. Preuss. Akad. Wiss. Berlin, 778 (1915a)

  24. Einstein, A.: Seitsber. Preuss. Akad. Wiss. Berlin, 844 (1915b)

  25. Hubble, E.: Proc. Nat. Acad. Sci. 15, 168 (1929)

    Article  ADS  Google Scholar 

  26. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. The Cambridge University Press, Cambridge (1975)

    MATH  Google Scholar 

  27. Wald, R.M.: General Relativity. The University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  28. Falco, M., Hansen, S.H., Wojtak, R., Mamon, G.A.: Mon. Not. R. Astron. Soc. Lett. 431, L6 (2013)

    Article  ADS  Google Scholar 

  29. Sengupta, S., Pal, P.B.: Phys. Lett. B 365, 175 (1996)

    Article  ADS  Google Scholar 

  30. Caprini, C., Ferreira, P.G.: J. Cosmol. Astropart. Phys. 02, 006 (2005)

    Article  ADS  Google Scholar 

  31. Bressi, G., et al.: Phys. Rev. A 83, 052101 (2011)

    Article  ADS  Google Scholar 

  32. Amole, C., et al.: Nat. Commun. 5, 3955 (2014)

    Article  ADS  Google Scholar 

  33. Peskin, M.E., Schroeder, D.V.: An Introduction To Quantum Field Theory. Westview Press, New York (1995)

    Google Scholar 

  34. Ryder, L.H.: Quantum Field Theory, 2nd edn. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  35. Tu, L.C., Luo, J., Gillies, G.T.: Rep. Prog. Phys. 68, 77 (2005)

    Article  ADS  Google Scholar 

  36. Goldhaber, A.S., Nieto, M.M.: Rev. Mod. Phys. 82, 939 (2010)

    Article  ADS  Google Scholar 

  37. Lyttleton, R.A., Bondi, H.: Proc. R. Soc. Lond. A 252, 313 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  38. Hoyle, F.: Proc. R. Soc. Lond. A 257, 431 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  39. Lyttleton, R.A., Bondi, H.: Proc. R. Soc. Lond. A 257, 442 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  40. Barry, G.W.: Astrophys. J. 190, 279 (1974)

    Article  ADS  Google Scholar 

  41. Orito, S., Yoshimura, M.: Phys. Rev. Lett. 54, 2457 (1985)

    Article  ADS  Google Scholar 

  42. Brisudova, M., Kinney, W.H., Woodard, R.P.: Class. Quantum Gravity 18, 3929 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  43. Massó, E., Rota, F.: Phys. Lett. B 545, 221 (2002)

    Article  ADS  Google Scholar 

  44. Dolgov, A., Pelliccia, D.N.: Phys. Lett. B 650, 97 (2007)

    Article  ADS  Google Scholar 

  45. Tsagas, C.G.: Phys. Rev. Lett. 86, 5421 (2001)

    Article  ADS  Google Scholar 

  46. Tsagas, C.G.: Class. Quantum Gravity 22, 393 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  47. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. The Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  48. Schwartz, M.D.: Quantum Field Theory and the Standard Model. The Cambridge University Press, Cambridge (2013)

    Google Scholar 

  49. Dunkley, J., et al.: 2009. Astrophys. J. Suppl. 180, 306 (2009)

    Article  ADS  Google Scholar 

  50. Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud et al., arXiv:1502.01589 (2015)

  51. Ryutov, D.D.: Plasma Phys. Controll. Fusion 49, B429 (2007)

    Article  ADS  Google Scholar 

  52. Adelberger, E., Dvali, G., Gruzinov, A.: Phys. Rev. Lett. 98, 010402 (2007)

    Article  ADS  Google Scholar 

  53. de Broglie, L.: La Mécanique Ondulatoire du Photon. Une Nouvelle Théorie de la Lumière. Hermann & Cie, Paris (1940)

    MATH  Google Scholar 

  54. Gintsburg, M.A.: Sov. Astron. 7, 536 (1964)

    ADS  Google Scholar 

  55. Kobzarev, I.Y., Okun, L.B.: Sov. Phys. Usp. 11, 338 (1968)

    Article  ADS  Google Scholar 

  56. Aragao de Carvalho, C., Rosa Jr., S.G.: J. Phys. A 13, 3233 (1980)

    Article  ADS  Google Scholar 

  57. Mohling, F.: Statistical Mechanics: Methods and Applications. Wiley, New York (1983)

    Google Scholar 

  58. Schwabl, F.: Statistical Mechanics. Springer, Berlin (2006)

    MATH  Google Scholar 

  59. Bass, L., Schrödinger, E.: Proc. R. Soc. Lond. A 232, 1 (1955)

    Article  ADS  Google Scholar 

  60. Goldhaber, A.S., Nieto, M.M.: Rev. Mod. Phys. 43, 277 (1971)

    Article  ADS  Google Scholar 

  61. Stueckelberg, E.C.G.: Helv. Phys. Acta 30, 209 (1957)

    MathSciNet  Google Scholar 

  62. Gertsenshtein, M.E., Solovei, L.G.: JETP Lett. 9, 79 (1969)

    ADS  Google Scholar 

  63. Kroll, N.M.: Phys. Rev. Lett. 26, 1395 (1971)

    Article  ADS  Google Scholar 

  64. Gibbons, G.W., Hawking, S.W.: Phys. Rev. D 15, 2738 (1977)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author thanks an anonymous reviewer for a very good report which has helped to improve the presentation of the paper. This work was supported by the National Basic Research Program (973 Program) of China (Grant No. 2014CB845800) and the NSFC grants program (no. 11373012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Xin Li.

Appendices

Appendix 1: Derivation of Eq. (40)

By the equation 7.5.14 of [27], we have

$$\begin{aligned} 2\delta R_{ac} = -g^{bd}\nabla _a\nabla _c\delta g_{bd}-g^{bd}\nabla _b\nabla _d\delta g_{ac} +2g^{bd}\nabla _b\nabla _{(a}\delta g_{c)d} , \end{aligned}$$
(90)

and

$$\begin{aligned} 2A^aA^c\delta R_{ac} = -g^{bd}A^aA^c\nabla _a\nabla _c\delta g_{bd}-g^{bd}A^aA^c\nabla _b\nabla _d\delta g_{ac} +2g^{bd}A^aA^c\nabla _b\nabla _a\delta g_{cd} . \nonumber \\ \end{aligned}$$
(91)

Let us evaluate each term on the right-hand side of Eq. (91) separately. For the first term, we have

$$\begin{aligned} -g^{bd}A^aA^c\nabla _a\nabla _c\delta g_{bd}= & {} -g^{bd}\nabla _a\left( A^aA^c\nabla _c\delta g_{bd}\right) +g^{bd}\nabla _a(A^aA^c)\nabla _c\delta g_{bd} \nonumber \\= & {} -g^{bd}\nabla _a\left( A^aA^c\nabla _c\delta g_{bd}\right) +g^{bd}\nabla _c\left[ \nabla _a(A^aA^c)\delta g_{bd}\right] \nonumber \\&\quad -g^{bd}\nabla _c\nabla _a(A^aA^c)\delta g_{bd} \nonumber \\= & {} \nabla ^a[\ldots ]_a-g^{bd}\nabla _c\nabla _a(A^aA^c)\delta g_{bd} , \end{aligned}$$
(92)

where \(\nabla ^a[\ldots ]_a\) is not written out explicitly since it does not contribute to the integral of action so does not affect the derivation of stress-energy tensor.

Similarly, for the second term on the right-hand side of Eq. (91), we have

$$\begin{aligned} -g^{bd}A^aA^c\nabla _b\nabla _d\delta g_{ac} = \nabla ^a[\ldots ]_a-g^{bd}\nabla _d\nabla _b(A^aA^c)\delta g_{ac} . \end{aligned}$$
(93)

For the third term, we have

$$\begin{aligned} +2g^{bd}A^aA^c\nabla _b\nabla _a\delta g_{cd} =\nabla ^a[\ldots ]_a+2g^{bd}\nabla _a\nabla _b(A^aA^c)\delta g_{cd} . \end{aligned}$$
(94)

Hence we get

$$\begin{aligned} 2A^aA^c\delta R_{ac}\doteq & {} -g^{bd}\nabla _c\nabla _a(A^aA^c)\delta g_{bd} -g^{bd}\nabla _d\nabla _b(A^aA^c)\delta g_{ac}\nonumber \\&\quad +\,2g^{bd}\nabla _a\nabla _b(A^aA^c)\delta g_{cd} , \end{aligned}$$
(95)

where \(\doteq \) means “equal up to a term like \(\nabla ^a[\ldots ]_a\)”. Making use of the identity \(\delta g_{ab}=-g_{ac}g_{bd}\delta g^{cd}\), we get

$$\begin{aligned} 2A^aA^c\delta R_{ac} \doteq \left[ \nabla _c\nabla _d(A^cA^d)g_{ab} +\nabla ^d\nabla _d(A_aA_b)-2\nabla ^c\nabla _b(A_aA_c)\right] \delta g^{ab} . \end{aligned}$$
(96)

On the other hand, we have

$$\begin{aligned} R_{ac}\delta (A^aA^c) = 2A^cR_{ca}A_b\delta g^{ab} , \end{aligned}$$
(97)

and

$$\begin{aligned} R_{ac}A^aA^c\delta \sqrt{-g}=-\frac{1}{2}\sqrt{-g}R_{cd}A^cA^dg_{ab}\delta g^{ab} . \end{aligned}$$
(98)

Therefore, we have

$$\begin{aligned}&\delta \left( \sqrt{-g}R_{ac}A^aA^c\right) \doteq \sqrt{-g}\left\{ \frac{1}{2}\nabla ^c\nabla _c(A_aA_b) -\nabla ^c\nabla _b(A_cA_a)+2A^cR_{ca}A_b\right. \nonumber \\&\quad \left. +\,\frac{1}{2}g_{ab}\left[ \nabla _c\nabla _d(A^cA^d) -R_{cd}A^cA^d\right] \right\} \delta g^{ab} . \nonumber \\ \end{aligned}$$
(99)

Then, by Eq. (17), the stress-energy tensor in Eq. (40) is derived after symmetrization of the tensor index as required by the definition of \(T_{ab}\).

Appendix 2: Derivation of Eq. (41)

For the simplicity of calculations, let us define

$$\begin{aligned} \Pi _{ab}^{(1)} = \nabla _c\nabla _d(A^cA^d)g_{ab} +\nabla ^c\nabla _c(A_aA_b) -2\nabla ^c\nabla _{(a}(A_{b)}A_c) , \end{aligned}$$
(100)

and

$$\begin{aligned} \Pi _{ab}^{(2)} = 4A^cR_{c(a}A_{b)}-R_{cd}A^cA^dg_{ab} . \end{aligned}$$
(101)

We have then

$$\begin{aligned} T_{\mathrm{EM},ab} = ~^{(0)}T_{\mathrm{EM},ab}+\frac{\kappa }{8\pi }\left( \Pi _{ab}^{(1)}+\Pi _{ab}^{(2)}\right) , \end{aligned}$$
(102)

and

$$\begin{aligned} \nabla ^{aT_{\mathrm{EM},ab}} = \nabla ^{a(0)} {T_{\mathrm{{EM}},ab}}+\frac{\kappa }{8\pi }\nabla ^a\left( \Pi _{ab}^{(1)}+\Pi _{ab}^{(2)}\right) , \end{aligned}$$
(103)

where

$$\begin{aligned} \nabla ^{a(0)} T_{\mathrm{EM},ab} = \frac{1}{4\pi }F_{ba}\nabla _cF^{ca} . \end{aligned}$$
(104)

The divergence of \(\Pi _{ab}^{(1)}\) is

$$\begin{aligned} \nabla ^a\Pi _{ab}^{(1)}= & {} \nabla _b\nabla _c\nabla _d(A^cA^d) +\nabla ^a\nabla ^d\nabla _d(A_aA_b)-2\nabla ^a\nabla ^c\nabla _{(a}(A_{b)}A_c) \nonumber \\= & {} \nabla _b\left( \nabla _c A^c\nabla _dA^d+A^c\nabla _c\nabla _dA^d +\,\nabla _cA^d\nabla _dA^c+A^d\nabla _c\nabla _dA^c\right) \nonumber \\&+\,\nabla ^a\left( 2\nabla ^dA_a\nabla _dA_b+A_a\nabla ^d\nabla _dA_b +A_b\nabla ^d\nabla _dA_a\right) \nonumber \\&-\,\nabla ^a\left( \nabla ^cA_b\nabla _aA_c+A_b\nabla ^c\nabla _aA_c +\nabla ^cA_c\nabla _aA_b+A_c\nabla ^c\nabla _aA_b\right) \nonumber \\&-\,\nabla ^a\left( \nabla ^cA_a\nabla _bA_c+A_a\nabla ^c\nabla _bA_c +\nabla ^cA_c\nabla _bA_a+A_c\nabla ^c\nabla _bA_a\right) \nonumber \\= & {} \left( 2\nabla _b\nabla _c A^c\nabla _dA^d +\nabla _bA^c\nabla _c\nabla _dA^d+A^c\nabla _b\nabla _c\nabla _dA^d+2\nabla _b\nabla _cA^d\nabla _dA^c\right. \nonumber \\&\left. +\,\nabla _bA^d\nabla _c\nabla _dA^c+A^d\nabla _b\nabla _c\nabla _dA^c\right) \nonumber \\&+\,\left( 2\nabla ^a\nabla ^dA_a\nabla _dA_b+2\nabla ^dA_a\nabla ^a\nabla _dA_b\right. \nonumber \\&\left. +\,\nabla ^aA_a\nabla ^d\nabla _dA_b\!+\!A_a\nabla ^a\nabla ^d\nabla _dA_b+\nabla ^aA_b\nabla ^d\nabla _dA_a+A_b\nabla ^a\nabla ^d\nabla _dA_a\right) \nonumber \\&-\,\left( \nabla ^a\nabla ^cA_b\nabla _aA_c+\nabla ^cA_b\nabla ^a\nabla _aA_c +\nabla ^aA_b\nabla ^c\nabla _aA_c+A_b\nabla ^a\nabla ^c\nabla _aA_c\right. \nonumber \\&+\,\nabla ^a\nabla ^cA_c\nabla _aA_b+\nabla ^cA_c\nabla ^a\nabla _aA_b \nonumber \\&\left. +\,\nabla ^aA_c\nabla ^c\nabla _aA_b+A_c\nabla ^a\nabla ^c\nabla _aA_b\right) -\left( \nabla ^a\nabla ^cA_a\nabla _bA_c+\nabla ^cA_a\nabla ^a\nabla _bA_c\right. \nonumber \\&+\,\nabla ^aA_a\nabla ^c\nabla _bA_c+A_a\nabla ^a\nabla ^c\nabla _bA_c\nonumber \\&\left. +\,\nabla ^a\nabla ^cA_c\nabla _bA_a+\nabla ^cA_c\nabla ^a\nabla _bA_a +\nabla ^aA_c\nabla ^c\nabla _bA_a+A_c\nabla ^a\nabla ^c\nabla _bA_a\right) \nonumber \\= & {} \nabla _aA^a\times \textcircled {1}+\nabla _bA^c\times \textcircled {2}+\nabla ^cA_b\times \textcircled {3}+\nabla _aA^c\times \textcircled {4}+[\text{ Rest }], \end{aligned}$$
(105)

where

$$\begin{aligned} \textcircled {1}= & {} 2\left( \nabla _b\nabla _c-\nabla _c\nabla _b\right) A^c =-2R_{bd}A^d, \quad \textcircled {2} =0 ,\nonumber \\ \textcircled {3}= & {} (\nabla _a\nabla _c-\nabla _c\nabla _a)A^a =R_{cd}A^d ,\nonumber \\ \textcircled {4}= & {} 2(\nabla _b\nabla _c-\nabla _c\nabla _b)A^a+\left( \nabla _c\nabla ^a-\nabla ^a\nabla _c\right) A_b=-2R_{bcd}^{\;\;\;\;\;\;a}A^d+R_{bdc}^{\;\;\;\;\;\;a}A^d ,\nonumber \\ \end{aligned}$$
(106)

and

$$\begin{aligned} {[}\text{ Rest }]= & {} A^c\nabla _b\nabla _c\nabla _dA^d +A^d\nabla _b\nabla _c\nabla _dA^c +A_a\nabla ^a\nabla ^d\nabla _dA_b +A_b\nabla ^a\nabla ^d\nabla _dA_a\nonumber \\&-A_b\nabla ^a\nabla ^c\nabla _aA_c -A_c\nabla ^a\nabla ^c\nabla _aA_b \nonumber \\&-A_a\nabla ^a\nabla ^c\nabla _bA_c -A_c\nabla ^a\nabla ^c\nabla _bA_a \nonumber \\= & {} A^c\left[ \nabla _b\left( \nabla _c\nabla _aA^a+\nabla _a\nabla _cA^a\right) -\left( \nabla _c\nabla _a+\nabla _a\nabla _c\right) \nabla _bA^a\right] \nonumber \\&+A_b\left( \nabla _a\nabla _c-\nabla _c\nabla _a\right) \nabla ^cA^a \nonumber \\&+A^a\left( \nabla _a\nabla _c-\nabla _c\nabla _a\right) \nabla ^cA_b . \end{aligned}$$
(107)

By the equation 3.2.12 of [27], we have \(\nabla _a\nabla _b\omega _{cd}-\nabla _b\nabla _a\omega _{cd}=R_{abc}^{\;\;\;\;\;\;e}\omega _{ed}+R_{abd}^{\;\;\;\;\;\;e}\omega _{ce}\) for any tensor \(\omega _{ab}\), from which we get \(\nabla _a\nabla _b\omega ^c_{\;\,d}-\nabla _b\nabla _a\omega ^c_{\;\,d}=-R_{abe}^{\;\;\;\;\;\;c}\omega ^e_{\;\,d}+R_{abd}^{\;\;\;\;\;\;e}\omega ^c_{\;\,e}\). Hence, we have

$$\begin{aligned} \left( \nabla _c\nabla _a+\nabla _a\nabla _c\right) \nabla _bA^a = 2\nabla _c\nabla _a\nabla _bA^a+R_{acb}^{\;\;\;\;\;\;e}\nabla _eA^a+R_{ce}\nabla _bA^e , \end{aligned}$$
(108)

where we have used the identities \(R_{ace}^{\;\;\;\;\;\;a}=-R_{cae}^{\;\;\;\;\;\;a}=-R_{ce}\).

We also have \(\nabla _c\nabla _aA^a+\nabla _a\nabla _cA^a=2\nabla _c\nabla _aA^a+R_{cd}A^d\). Then, in the expression for [Rest],

$$\begin{aligned}&A^c\left[ \nabla _b\left( \nabla _c\nabla _aA^a+\nabla _a\nabla _cA^a\right) -\left( \nabla _c\nabla _a+\nabla _a\nabla _c\right) \nabla _bA^a\right] \nonumber \\&\quad =A^c\left[ 2\nabla _c\left( \nabla _b\nabla _aA^a-\nabla _a\nabla _bA^a\right) +\nabla _b\left( R_{cd}A^d\right) \right. \nonumber \\&\quad \left. -R_{acb}^{\;\;\;\;\;\;e}\nabla _eA^a-R_{ce}\nabla _bA^e\right] =A^c\left[ -2\nabla _c\left( R_{bd}A^d\right) \right. \nonumber \\&\quad \left. +\nabla _b\left( R_{cd}A^d\right) -R_{acb}^{\;\;\;\;\;\;e}\nabla _eA^a-R_{ce}\nabla _bA^e\right] , ~ \end{aligned}$$
(109)

where we have used the identity \(\nabla _b\nabla _c\nabla _aA^a=\nabla _c\nabla _b\nabla _aA^a\).

For the other two terms in [Rest], we have

$$\begin{aligned}&A_b\left( \nabla _a\nabla _c-\nabla _c\nabla _a\right) \nabla ^cA^a = A_b\left( -R_{ace}^{\;\;\;\;\;\;c}\nabla ^eA^a-R_{ace}^{\;\;\;\;\;\;a}\nabla ^cA^e\right) \nonumber \\&\quad = -A_bR_{ae}\left( \nabla ^eA^a-\nabla ^aA^e\right) = 0 , \end{aligned}$$
(110)

and

$$\begin{aligned} A^a\left( \nabla _a\nabla _c-\nabla _c\nabla _a\right) \nabla ^cA_b = A^a\left( -R_{ae}\nabla ^eA_b +R_{acb}^{\;\;\;\;\;\;e}\nabla ^cA_e\right) . \end{aligned}$$
(111)

Therefore, we have

$$\begin{aligned}{}[\text{ Rest }]= & {} A^c\left[ -2\nabla _c\left( R_{bd}A^d\right) +\nabla _b\left( R_{cd}A^d\right) -R_{acb}^{\;\;\;\;\;\;e}\nabla _eA^a-R_{ce}\nabla _bA^e\right] \nonumber \\&\quad +A^a\left( -R_{ae}\nabla ^eA_b+R_{acb}^{\;\;\;\;\;\;e}\nabla ^cA_e\right) \nonumber \\= & {} A^c\left[ -2\nabla _c\left( R_{bd}A^d\right) +\nabla _b\left( R_{cd}A^d\right) \right. \nonumber \\&\left. \quad +R_{cabe}(\nabla ^eA^a+\nabla ^aA^e)-R_{ce}\left( \nabla _bA^e+\nabla ^eA_b\right) \right] . \end{aligned}$$
(112)

Putting the above results together, we get

$$\begin{aligned} \nabla ^a\Pi _{ab}^{(1)} = -2\nabla _c\left( A^cR_{bd}A^d\right) +A^c\nabla _b\left( R_{cd}A^d\right) -A^dR_{dc}\nabla _bA^c , \end{aligned}$$
(113)

where we have used the identity \(-R_{bcda}+R_{bdca}+R_{dcba}=0\) (since \(R_{[abc]}^{\;\;\;\;\;\;\;d}=0\)).

The divergence of \(\Pi _{ab}^{(2)}\) is

$$\begin{aligned} \nabla ^a\Pi _{ab}^{(2)} = 2\nabla _c\left( A^dR_{db}A^{c}\right) +2\nabla ^c\left( A^dR_{dc}A_{b}\right) -\nabla _b\left( R_{cd}A^cA^d\right) . \end{aligned}$$
(114)

Therefore, we have

$$\begin{aligned}&\nabla ^a\left( \Pi _{ab}^{(1)}+\Pi _{ab}^{(2)}\right) = 2\nabla ^c\left( A^dR_{dc}A_{b}\right) -2A^dR_{dc}\nabla _bA^c\nonumber \\&\quad = -2F_b^{\;\,c}R_{cd}A^d+2A_b\nabla ^c\left( R_{cd}A^d\right) . \end{aligned}$$
(115)

Substituting Eqs. (104) and (115) into Eq. (103), we get Eq. (41).

Note, when we derived the Eq. (115) we did not make use of the electromagnetic field equation. When \(R_{ab}=0\), we have \(\Pi _{ab}^{(2)}=0\) and \(\nabla ^a\Pi _{ab}^{(1)}=0\).

Appendix 3: Derivation of the Poynting flux vector

In this appendix we derive the Poynting flux vector corresponding to the electromagnetic field Eq. (10).

By Eqs. (5) and (6), the \(F_{ab}\) can be expressed in terms of \(E_a\) and \(B_a\) as

$$\begin{aligned} F_{ab}=-2E_{[a}u_{b]}-\epsilon _{abcd}B^cu^d , \end{aligned}$$
(116)

where \(u^au_a=-1\) and \(E_au^a=B_au^a=0\). We can derive

$$\begin{aligned} F_{ab}F^{ab}=-2\left( E_aE^a-B_aB^a\right) , \end{aligned}$$
(117)

and

$$\begin{aligned} F_{ac}F_b^{\;\,c} = -E_aE_b-B_aB_b+E_cE^cu_au_b +(g_{ab}+u_au_b)B_cB^c+2u_{(a}\tilde{\epsilon }_{b)cd}E^cB^d , \nonumber \\ \end{aligned}$$
(118)

where \(\tilde{\epsilon }_{abc}\equiv -\epsilon _{abcd}u^d\).

By Eq. (19), we get

$$\begin{aligned} 4\pi ^{(0)}T_{\mathrm{EM},ab}= & {} \left( E_cE^c+B_cB^c\right) \left( u_au_b+\frac{1}{2}g_{ab}\right) \nonumber \\&-\,E_aE_b-B_aB_b+2u_{(a}\tilde{\epsilon }_{b)cd}E^cB^d . \end{aligned}$$
(119)

To express the law of energy conservation in terms of \(E_a\) and \(B_a\), we assume that the spacetime has a timelike Killing vector \(t^a\) parallel to the \(u^a\), i.e., \(t^a=\alpha u^a\), where \(\alpha \) is the lapse function. By the Killing equation [27], we get

$$\begin{aligned} 0=\nabla _{(a}t_{b)}=\alpha \nabla _{(a}u_{b)}+u_{(a}\nabla _{b)}\alpha , \end{aligned}$$
(120)

from which we can derive

$$\begin{aligned} \alpha \nabla _au^a+u^a\nabla _a\alpha =0 \end{aligned}$$
(121)

and

$$\begin{aligned} u^a\nabla _au_b=\nabla _b\ln \alpha -u_bu^a\nabla _a\ln \alpha . \end{aligned}$$
(122)

Since \(u^bu_b=-1\) and \(u^b\nabla _au_b=0\), Eq. (122) leads to

$$\begin{aligned} u^a\nabla _a\alpha =0 , u^a\nabla _au_b=\nabla _b\ln \alpha . \end{aligned}$$
(123)

Then, by Eq. (121) we have

$$\begin{aligned} \nabla _au^a=0 . \end{aligned}$$
(124)

An energy-momentum flux vector \(\mathcal{J}^a\) is defined by

$$\begin{aligned} \mathcal{J}_a \equiv -t^b T_{\mathrm{EM},ab} = -\alpha u^b T_{\mathrm{EM},ab}. \end{aligned}$$
(125)

By Eqs. (18), (119), and (20), we get

$$\begin{aligned} \mathcal{J}^a = \frac{\alpha }{4\pi }\left\{ \frac{1}{2} \left[ E_cE^c+B_cB^c+\xi \left( \Phi ^2+\tilde{A}_c\tilde{A}^c\right) \right] u^a +\left( \tilde{\epsilon }^{acd}E_cB_d+\xi \Phi \tilde{A}^a\right) \right\} , \nonumber \\ \end{aligned}$$
(126)

where we have written \(A^a\) in terms of a scalar potential \(\Phi \) and a spatial vector potential \(\tilde{A}^a\) (i.e., \(A^a=\Phi u^a+\tilde{A}^a\), \(u_a\tilde{A}^a=0\)).

With the expression in Eq. (126), the energy-momentum flux vector is decomposed into an energy density component parallel to \(u^a\), and a spatial momentum component perpendicular to \(u^a\):

$$\begin{aligned} \mathcal{J}^a=\rho _\mathrm{EM}u^a+\tilde{\mathcal{J}}^a , \end{aligned}$$
(127)

where

$$\begin{aligned} \rho _\mathrm{EM}=\frac{\alpha }{8\pi }\left[ E_cE^c+B_cB^c+\xi \left( \Phi ^2+\tilde{A}_c\tilde{A}^c\right) \right] , \end{aligned}$$
(128)

and

$$\begin{aligned} \tilde{\mathcal{J}}^a=\frac{\alpha }{4\pi }\left( \tilde{\epsilon }^{acd}E_cB_d+\xi \Phi \tilde{A}^a\right) . \end{aligned}$$
(129)

In \(\tilde{\mathcal{J}}^a\), the first term is just the usual Poynting flux vector, and the second term is an additional momentum flux due to the \(\xi \)-term in the electromagnetic equation. We may call \(\tilde{\mathcal{J}}^a\) the generalized Poynting flux vector.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, LX. Electrodynamics on cosmological scales. Gen Relativ Gravit 48, 28 (2016). https://doi.org/10.1007/s10714-016-2028-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-016-2028-3

Keywords

Navigation