Skip to main content
Log in

Non-constant volume exponential solutions in higher-dimensional Lovelock cosmologies

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this paper we propose a scheme which allows one to find all possible exponential solutions of special class—non-constant volume solutions—in Lovelock gravity in arbitrary number of dimensions and with arbitrate combinations of Lovelock terms. We apply this scheme to (\(6+1\))- and (\(7+1\))-dimensional flat anisotropic cosmologies in Einstein–Gauss–Bonnet and third-order Lovelock gravity to demonstrate how our scheme does work. In course of this demonstration we derive all possible solutions in (\(6+1\)) and (\(7+1\)) dimensions and compare solutions and their abundance between cases with different Lovelock terms present. As a special but more “physical” case we consider spaces which allow three-dimensional isotropic subspace for they could be viewed as examples of compactification schemes. Our results suggest that the same solution with three-dimensional isotropic subspace is more “probable” to occur in the model with most possible Lovelock terms taken into account, which could be used as kind of anthropic argument for consideration of Lovelock and other higher-order gravity models in multidimensional cosmologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Keep (26) in mind for physical value of x.

References

  1. Deruelle, N., Fariña-Busto, L.: Phys. Rev. D 41, 3696 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  2. Deruelle, N.: Nucl. Phys. B 327, 253 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  3. Ivashchuk, V.: Int. J. Geom. Meth. Mod. Phys. 7, 797 (2010). arXiv:0910.3426

  4. Kirnos, I.V., Makarenko, A.N., Pavluchenko, S.A., Toporensky, A.V.: Gen. Relativ. Gravit. 42, 2633 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Kirnos, I.V., Pavluchenko, S.A., Toporensky, A.V.: Gravit. Cosmol. 16, 274 (2010). arXiv:1002.4488

  6. Barrow, J., Hervik, S.: Phys. Rev. D 74, 124017 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  7. Barrow, J., Hervik, S.: Phys. Rev. D 81, 023513 (2010)

    Article  ADS  Google Scholar 

  8. Chirkov, D., Pavluchenko, S., Toporensky, A.: Mod. Phys. Lett. A 29, 1450093 (2014).arXiv:1401.2962

  9. Chirkov, D., Pavluchenko, S., Toporensky, A.: Gen. Rel. Grav. 46, 1799 (2014). arXiv:1403.4625

  10. Müller-Hoissen, F.: Phys. Lett. 163B, 106 (1985)

    Article  ADS  Google Scholar 

  11. Müller-Hoissen, F.: Class. Quant. Grav. 3, 665 (1986)

    Article  ADS  MATH  Google Scholar 

  12. Ishihara, H.: Phys. Lett. B 179, 217 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  13. Elizalde, E., Makarenko, A.N., Obukhov, V.V., Osetrin, K.E., Filippov, A.E.: Phys. Lett. B 644, 1 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Maeda, K.I., Ohta, N.: Phys. Rev. D 71, 063520 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  15. Maeda, K.I., Ohta, N.: JHEP 1406, 095 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  16. Canfora, F., Giacomini, A., Pavluchenko, S.A.: Phys. Rev. D 88, 064044 (2013)

    Article  ADS  Google Scholar 

  17. Canfora, F., Giacomini, A., Pavluchenko, S.A.: Gen. Rel. Grav. 46, 1805 (2014)

    Article  ADS  Google Scholar 

  18. Demaret, J., Caprasse, H., Moussiaux, A., Tombal, P., Papadopoulos, D.: Phys. Rev. D 41, 1163 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Mena Marugán, G.A.: Phys. Rev. D 46, 4340 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  20. Lovelock, D.: J. Math. Phys. 12, 498 (1971)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Pavluchenko, S.A., Toporensky, A.V.: Mod. Phys. Lett. A 24, 513 (2009)

    Article  ADS  Google Scholar 

  22. Pavluchenko, S.A.: Phys. Rev. D 80, 107501 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  23. Pavluchenko, S.A.: Phys. Rev. D 82, 104021 (2010)

    Article  ADS  Google Scholar 

  24. Pavluchenko, S.A., Toporensky, A.V.: Gravit. Cosmol. 20, 127 (2014). arXiv:1212.1386

  25. Zwiebach, B.: Phys. Lett. B 156, 315 (1985)

    Article  ADS  Google Scholar 

  26. Zumino, B.: Phys. Rep. 137, 109 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  27. McDonald, I.G.: Symmetric Functions and Hall Polynomials. The Clarendon Press, Oxford University Press, Oxford (1979)

    Google Scholar 

Download references

Acknowledgments

The work of A.T. is supported by RFBR Grant 14-02-00894 and partially supported by the Russian Government Program of Competitive Growth of Kazan Federal University. S.A.P. is supported by FONDECYT via Grant No. 3130599.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A. Pavluchenko.

Appendix

Appendix

See Tables 3, 4, 5, 6 and 7.

Table 3 Several splittings of D-dimensional space
Table 4 Summary of (7\(+\)1)-dimensional solutions in \(L_1+L_2+L_3~\)and EGB
Table 5 Summary of (6\(+\)1)-dimensional solutions in \(L_1+L_2+L_3~\)and EGB
Table 6 Summary of (7\(+\)1)-dimensional solutions which could lead to successful dynamical compactification in \(L_1+L_2+L_3~\)and EGB
Table 7 Summary of (6\(+\)1)-dimensional solutions which could lead to successful dynamical compactification in \(L_1+L_2+L_3~\)and EGB

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirkov, D., Pavluchenko, S.A. & Toporensky, A. Non-constant volume exponential solutions in higher-dimensional Lovelock cosmologies. Gen Relativ Gravit 47, 137 (2015). https://doi.org/10.1007/s10714-015-1981-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-015-1981-6

Keywords

Navigation