Skip to main content
Log in

Effective Einstein cosmological spaces for non-minimal modified gravity

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Certain off-diagonal vacuum and nonvacuum configurations in Einstein gravity can mimic physical effects of modified gravitational theories of \( f(R,T,R_{\mu \nu }T^{\mu \nu })\) type. We prove this statement by constructing exact and approximate solutions which encode certain models of covariant Hořava type gravity with dynamical Lorentz symmetry breaking. Off-diagonal generalizations of de Sitter and nonholonomic \(\Lambda \)CDM universes are constructed which are generated through nonlinear gravitational polarization of fundamental physical constants and which model interactions with non-constant exotic fluids and effective matter. The problem of possible matter instability for such off-diagonal deformations in (modified) gravity theories is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We have to introduce a system of notations which is different from that in standard cosmology. This will be convenient for constructing cosmological models with generic off-diagonal metrics.

  2. Which cannot be diagonalized by coordinate transformations.

  3. The Einstein rule on index summation will be applied if the contrary is not stated. Boldface letters are used in order to emphasize that an N-connection spitting is considered on a spacetime manifold \(\mathbf {V=(}V,\mathbf {N).}\)

  4. see details in Sects. 3.1.2 and 3.2.

  5. The method can be extended to account for \(y^{3}\) dependence and non-Killing configurations (see [2329]). In this paper the local coordinates and ansätze for d-metrics are parameterized in different forms than in previous works, what is more convenient for the study of cosmological models.

  6. In section III A of that work, a model with \(G(T)=0\) was investigated in detail. The conclusion was that in order to elaborate a realistic evolution it is necessary to consider nontrivial values for \(G(T)\). In nonholonomic variables, such term \(\widehat{\mathbf {G}}(\widehat{\mathbf {T}})\) allows to encode \(f(R)\) modified theories and related into certain off-diagonal configurations in GR, which simplifies the solution of the problem of matter instability (see Sect. 4.3).

  7. We use a system of notations different from that article; here, e.g., \(N\) in used for the N-connection and we work with nonholonomic geometric objects.

References

  1. Capozziello, S., Faraoni, V.: Beyond Einstein Gravity: A Survey of Gravitational Theories for Cosmology and Astrophysics, Fundamental Theories of Physics, vol. 170, p. 467. Springer, Netherlands (2011)

    Google Scholar 

  2. Capozziello, S., De Laurentis, M.: Phys. Rep. 509, 167 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  3. Nojiri, S., Odintsov, S.D.: Phys. Rep. 505, 59 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  4. Elizalde, E., Nojiri, S., Odintsov, S.D.: Phys. Rev. D 70, 043539 (2004)

    Article  ADS  Google Scholar 

  5. Cognola, G., Elizalde, E., Odintsov, S.D., Tretyakov, P., Zerbini, S.: Phys. Rev. D 79, 044001 (2009)

    Article  ADS  Google Scholar 

  6. Brevik, I., Elizalde, E., Nojiri, S., Odintsov, S.D.: Phys. Rev. D 84, 103508 (2011)

    Article  ADS  Google Scholar 

  7. Crofton, T., Ferreira, P.G., Padilla, A., Skordis, C.: Phys. Rep. 513, 1 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  8. Vitagliano, V., Sotiriou, T.P., Liberati, S.: Phys. Rev. D 82, 084007 (2010)

    Article  ADS  Google Scholar 

  9. Sotiriou, T.P., Faraoni, V.: Rev. Mod. Phys. 82, 451–497 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Lobo, F.S.N., Martinez-Asencio, J., Olmo, G.J., Rubiera-Garcia, D.: Phys. Rev. D 90, 024033 (2014)

    Article  ADS  Google Scholar 

  11. Nojiri, S., Odintsov, S.D.: Phys. Rev. D 81, 043001 (2010)

    Article  ADS  Google Scholar 

  12. Nojiri, S., Odintsov, S.D.: Phys. Rev. D 83, 023001 (2011)

    Article  ADS  Google Scholar 

  13. Kluson, J., Nojiri, S., Odintsov, S.D.: Phys. Lett. B 701, 117 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  14. Elizalde, E., Nojiri, S., Odintsov, S.D., Saez-Gomez, D.: Eur. Phys. J. C 70, 351 (2010)

    Article  ADS  Google Scholar 

  15. Vacaru, S.: EPL 96, 50001 (2011)

    Article  ADS  Google Scholar 

  16. Vacaru, S.: Gen. Relativ. Gravit. 44, 1015 (2012)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Vacaru, S.: J. Math. Phys. 54, 073511 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  18. Vacaru, S.: J. Geom. Phys. 60, 1289 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Vacaru, S.: Int. J. Geom. Meth. Mod. Phys. 6, 873 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Harko, T., Lobo, F.S.N., Nojiri, S., Odintsov, S.D.: Phys. Rev. D 84, 024020 (2011)

    Article  ADS  Google Scholar 

  21. Odintsov, S.D., Saez-Gomez, D.: Phys. Lett. B 725, 437 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  22. Haghani, Z., Harko, T., Lobo, F.S.N., Sepangi, H.R., Shahidi, S.: Phys. Rev. D 88, 044023 (2013)

  23. Gheorghiu, T., Vacaru, O., Vacaru, S.: Eur. Phys. J. C 74, 3152 (2014)

    Article  ADS  Google Scholar 

  24. Vacaru, S., Veliev, E., Yazici, E.: Int. J. Geom. Meth. Mod. Phys. 11, 1450088 (2014)

    Article  MathSciNet  Google Scholar 

  25. Vacaru, S., Veliev, E., Yazici, E.: J. Math. Phys. 46, 042503 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  26. Vacaru, S., Veliev, E., Yazici, E.: J. Math. Phys. 49, 043504 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  27. Vacaru, S., Veliev, E., Yazici, E.: JHEP 04, 009 (2001)

    Article  ADS  Google Scholar 

  28. Vacaru, S., Singleton, D.: Class. Quant. Grav. 19, 3583 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Vacaru, S., Popa, F.C.: Class. Quant. Grav. 18, 4921 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Vacaru, S.: Int. J. Mod. Phys. D 21, 1250072 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  31. Bailakos, S., Mavromatos, N.E., Mitsou, V.A., Plionis, M.: Astropart. Phys. 36, 7 (2012)

    Article  ADS  Google Scholar 

  32. Kouretsis, A.P., Stathakopoulos, M., Stavrinos, P.C.: Phys. Rev. D 86, 124025 (2012)

    Article  ADS  Google Scholar 

  33. Hohmann, M.: Phys. Rev. D 87, 124034 (2013)

    Article  ADS  Google Scholar 

  34. Castro, C.: Int. J. Theor. Phys. 51, 3318 (2012)

    Article  MATH  Google Scholar 

  35. Kostelecky, V.A., Russell, N., Tso, R.: Phys. Lett. B716 470 (2012)

  36. Lammerzahl, C., Perlick, V., Hasse, W.: Phys. Rev. D 86, 104042 (2012)

    Article  ADS  Google Scholar 

  37. Kramer, D., Stephani, H., Herdlt, E., MacCallum, M.A.H.: Exact Solutions of Einstein’s Field Equations, 2nd edn. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  38. Griffiths, J.B., Podolský, J.: Exact Space-Times in Einstein’s General Relativity. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  39. Klusoň, J., Nojiri, S., Odintsov, S.D.: Phys. Lett. B 726, 918 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  40. Vacaru, S.: Off-diagonal ekpyrotic scenarios and equivalence of modified, massive and/or Einstein gravity. arXiv: 1304.1080

  41. Stavrinos, P., Vacaru, S.: Class. Quant. Grav. 30, 055012 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  42. Vacaru, S.: Int. J. Geom. Meth. Mod. Phys. 11, 1450032 (2014)

    Article  MathSciNet  Google Scholar 

  43. Ellis, G.F.R.: Inhomogeneity effects in cosmology. arXiv: 1103.2335

  44. Gödel, K.: Rev. Mod. Phys. 21, 447–450 (1949)

    Article  MATH  ADS  Google Scholar 

  45. Krasiński, A.: Inholomogeneous Cosmological Models. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  46. Appleby, S.A., Linder, E.V.: Phys. Rev. D 87, 023532 (2013)

    Article  ADS  Google Scholar 

  47. Nojiri, S., Odintsov, S.D., Saez-Gomez, D.: Phys. Lett. B 681, 74 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  48. Elizalde, E., Hurtado, J.Q.: Mod. Phys. Lett. A 19, 29 (2004)

    Article  ADS  Google Scholar 

  49. Dunsby, P.K.S., Elizalde, E., Gowami, R., Odintov, S., Saez-Gomez, D.: Phys. Rev D 82, 023519 (2010)

    Article  ADS  Google Scholar 

  50. de la Cruz-Dombriz, A., Dobado, A.: Phys. Rev. D 74, 087501 (2006)

    Article  ADS  Google Scholar 

  51. Alvarenga, F.G., de la Cruz-Dombriz, A., Houndjo, M.J.S., Rodrigues, M.E., Saez-Gomez, D.: Phys. Rev. D 87, 103526 (2013)

    Article  ADS  Google Scholar 

  52. Dolgov, A.D., Kawasaki, M.: Phys. Lett. B 573, 1 (2003)

    Article  MATH  ADS  Google Scholar 

  53. Faraoni, V.: Phys. Rev. D 74, 104017 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  54. Nojiri, S., Odintsov, S.D.: Phys. Rev. D 68, 123512 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  55. Tamanini, N., Koivisto, T.S.: Phys. Rev. D 88, 064052 (2013)

    Article  ADS  Google Scholar 

  56. Ayuso, I., Jimenez, J.B., de la Cruz-Dobriz, A.: arXiv: 1411.1636

  57. Starobinsky, A.: JETP Lett. 86, 157 (2007)

    Article  ADS  Google Scholar 

  58. Hu, W., Sawicki, I.: Phys. Rev. D 76, 064004 (2007)

    Article  ADS  Google Scholar 

  59. Nojiri, S., Odintsov, S.D.: Phys. Rev. D 77, 026007 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  60. Capozziello, S., Tsujikawa, S.: Phys. Rev. D 77, 107501 (2008)

    Article  ADS  Google Scholar 

  61. Cognola, G., Elizalde, E., Nojiri, S., Odintsov, S.D., Sebastiani, L., Zerbini, S.: Phys. Rev. D 77, 046009 (2008)

    Article  ADS  Google Scholar 

  62. Bamba, K., Geng, C.-Q., Lee, C.-C.: JCAP 1011, 001 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the Program IDEI, PN-II-ID-PCE-2011-3-0256, by an associated visiting research position at CERN, by MINECO (Spain), Grants PR2011-0128 and FIS2013-44881-P, by the CPAN Consolider Ingenio Project, and by AGAUR (Generalitat de Catalunya), contract 2009SGR-994. We thank S. Capozziello, S. D. Odintsov, S. Rajpoot, E. Saridakis, D. Singleton, and P. Stavrinos for important discussions and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiu I. Vacaru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elizalde, E., Vacaru, S.I. Effective Einstein cosmological spaces for non-minimal modified gravity. Gen Relativ Gravit 47, 64 (2015). https://doi.org/10.1007/s10714-015-1905-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-015-1905-5

Keywords

Navigation