Skip to main content
Log in

How to include fermions into general relativity by exotic smoothness

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The purpose of this paper is two-fold. At first we will discuss the generation of source terms in the Einstein–Hilbert action by using (topologically complicated) compact 3-manifolds. There is a large class of compact 3-manifolds with boundary such as a torus given as the complement of a (thickened) knot admitting a hyperbolic geometry, denoted as hyperbolic knot complements in the following. We will discuss the fermionic properties of this class of 3-manifolds, i.e. we are able to identify a fermion with a hyperbolic knot complement. Secondly we will construct a large class of space-times, the exotic \({\mathbb {R}}^{4}\), containing this class of 3-manifolds naturally. We begin with a topological trivial space, the \({\mathbb {R}}^{4}\), and change only the differential structure to obtain many nontrivial 3-manifolds. It is known for a long time that exotic \({\mathbb {R}}^{4}\)’s generate extra sources of gravity (Brans conjecture) but here we will analyze the structure of these source terms more carefully. Finally we will state that adding a hyperbolic knot complement will result in the appearance of a fermion as source term in the Einstein–Hilbert action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In complex coordinates the plumbing may be written as \((z,w)\mapsto (w,z)\) or \((z,w)\mapsto (\bar{w},\bar{z})\) creating either a positive or negative (respectively) double point on the disk \(D^{2}\times 0\) (the core).

  2. In the proof of Freedman [33], the main complications come from the lack of control about this process.

  3. The number of end-connected sums is exactly the number of self intersections of the immersed two handle.

  4. The ‘sides’ of \(S\) then correspond to the components of the complement of \(S\) in a tubular neighborhood \(S\times [0,1]\subset N\).

  5. A 2-Sylow subgroup of a finite group (here the fundamental group) is a subgroup whose order is a power of \(2\) (possibly \(2^{0}\)) and which is properly contained in no larger Sylow subgroup. We note that all 2-Sylow subgroups of a given group are isomorphic.

  6. To express the branching, one needs a more complex Whitehead link containing more circles. For the details consult the book [41].

References

  1. Ashtekar, A., Engle, J., Sloan, D.: Asymptotics and Hamiltonians in a first order formalism. Class. Quantum Gravity 25, 095020 (2008). arXiv:0802.2527

    Article  ADS  MathSciNet  Google Scholar 

  2. Asselmeyer-Maluga, T.: Exotic smoothness and quantum gravity. Class. Quantum Gravity 27, 165002 (2010). arXiv:1003.5506

    Article  ADS  MathSciNet  Google Scholar 

  3. Asselmeyer-Maluga, T., Brans, C.H.: Cosmological anomalies and exotic smoothness structures. Gen. Relat. Gravit. 34, 1767–1771 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Asselmeyer-Maluga, T., Brans, C.H.: Exotic Smoothness and Physics. World Scientific Publishing, Singapore (2007)

    Book  MATH  Google Scholar 

  5. Asselmeyer-Maluga, T., Król, J.: Exotic smooth \(\mathbb{R}^4\), noncommutative algebras and quantization (2010). arXiv: 1001.0882

  6. Asselmeyer-Maluga, T., Król, J.: Small exotic smooth \(R^4\) and string theory. In: Bathia, R. (ed.) International Congress of Mathematicians ICM 2010 Short Communications Abstracts Book, p. 400. Hindustan Book Agency, New Delhi (2010)

    Google Scholar 

  7. Asselmeyer-Maluga, T., Król, J.: Constructing a quantum field theory from spacetime (2011). arXiv:1107.3458

  8. Asselmeyer-Maluga, T., Król, J.: Topological quantum d-branes and wild embeddings from exotic smooth \(R^4\). Int. J. Mod. Phys. A 26, 3421–3437 (2011). arXiv:1105.1557

    Article  ADS  MATH  Google Scholar 

  9. Asselmeyer-Maluga, T., Król, J.: Quantum geometry and wild embeddings as quantum states. Int. J. Geom. Methods Modern Phys. 10(10), 1350055 (2013). doi:10.1142/S0219887813500552arXiv:1211.3012

  10. Asselmeyer-Maluga, T., Król, J.: Abelian gerbes, generalized geometries and foliations of small exotic \(R^4\). Rev. Math. Phys., (2014). arXiv: 0904.1276v5 (submitted)

  11. Asselmeyer-Maluga, T., Król, J.: Inflation and topological phase transition driven by exotic smoothness. Adv. HEP, Article ID 867460:14 pages (2014). doi:10.1155/2014/867460

  12. Asselmeyer-Maluga, T., Mader, R.: Exotic \(R^4\) and quantum field theory. In: Burdik, C. (ed.) 7th International Conference on Quantum Theory and Symmetries (QTS7), p. 012011. IOP Publishing, Bristol (2012). doi:10.1088/1742-6596/343/1/012011. arXiv:1112.4885

    Google Scholar 

  13. Asselmeyer-Maluga, T., Rosé, H.: On the geometrization of matter by exotic smoothness. Gen. Relat. Gravit. 44, 2825–2856 (2012). doi:10.1007/s10714-012-1419-3. arXiv:1006.2230

    Article  ADS  MATH  Google Scholar 

  14. Ashtekar, A., Sloan, D.: Action and Hamiltonians in higher dimensional general relativity: first order framework. Class. Quantum Gravity 25, 225025 (2008). arXiv:0808.2069

    Article  ADS  MathSciNet  Google Scholar 

  15. Asselmeyer, T.: Generation of source terms in general relativity by differential structures. Class. Quantum Gravity 14, 749–758 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  16. Biz̆aca, Z̆., Gompf, R.: Elliptic surfaces and some simple exotic \({\mathbb{R}}^4\)’s. J. Differ. Geom. 43, 458–504 (1996)

    MathSciNet  Google Scholar 

  17. Brans, C.H., Randall, D.: Exotic differentiable structures and general relativity. Gen. Relat. Gravit. 25, 205 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Brans, C.H.: Exotic smoothness and physics. J. Math. Phys. 35, 5494–5506 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Brans, C.H.: Localized exotic smoothness. Class. Quantum Gravity 11, 1785–1792 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Brans, C.: Absolulte spacetime: the twentieth century ether. Gen. Relat. Gravit. 31, 597 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Budney, R.: JSJ-decompositions of knot and link complements in the 3-sphere. L’enseignement Mathématique 52, 319–359 (2006). arXiv:math/0506523

    MATH  MathSciNet  Google Scholar 

  22. Chernov, V., Nemirovski, S.: Smooth cosmic censorship Comm. Math. Phys. 320, 469–473 (2013). arXiv:1201.6070

  23. Dabrowski, L., Dossena, G.: Dirac operator on spinors and diffeomorphisms. Class. Quantum Gravity 30, 015006 (2013). arXiv:1209.2021

    Article  ADS  MathSciNet  Google Scholar 

  24. DeMichelis, S., Freedman, M.H.: Uncountable many exotic \({R}^4\)’s in standard 4-space. J. Differ. Geom. 35, 219–254 (1992)

    MATH  MathSciNet  Google Scholar 

  25. Denicola, D., Marcolli, M., al Yasry, A.Z.: Spin foams and noncommutative geometry. Class. Quantum Gravity 27, 205025 (2010). arXiv:1005.1057

    Article  ADS  Google Scholar 

  26. Donaldson, S.: An application of gauge theory to the topology of 4-manifolds. J. Differ. Geom. 18, 269–316 (1983)

    MATH  MathSciNet  Google Scholar 

  27. Donaldson, S.: Irrationality and the h-cobordism conjecture. J. Differ. Geom. 26, 141–168 (1987)

    MATH  MathSciNet  Google Scholar 

  28. Duston, C.: Exotic smoothness in 4 dimensions and semiclassical Euclidean quantum gravity. Int. J. Geom. Methods Mod. Phys. 8, 459–484 (2010). arXiv:0911.4068

    Article  MathSciNet  Google Scholar 

  29. Duston, ChL: Topspin networks in loop quantum gravity. Class. Quantum Gravity 29, 205015 (2012). arXiv:1111.1252

    Article  ADS  MathSciNet  Google Scholar 

  30. Duston, Ch.L.: The fundamental group of a spatial section represented by a topspin network. Based on work presented at the LOOPS 13 conference at the Perimeter Institute (2013). arXiv:1308.2934

  31. Freedman, M., Quinn, F.: Topology of 4-Manifolds. Princeton Mathematical Series. Princeton University Press, Princeton (1990)

    Google Scholar 

  32. Freedman, M.H.: A surgery sequence in dimension four; the relation with knot concordance. Invent. Math. 68, 195–226 (1982)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Freedman, M.H.: The topology of four-dimensional manifolds. J. Differ. Geom. 17, 357–454 (1982)

    MATH  Google Scholar 

  34. Friedrich, T.: On the spinor representation of surfaces in euclidean 3-space. J. Geom. Phys. 28, 143–157 (1998). arXiv: dg-ga/9712021v1

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Friedman, J.L., Sorkin, R.D.: Spin \(\frac{1}{2}\) from gravity. Phys. Rev. Lett. 44, 1100–1103 (1980)

    Article  ADS  Google Scholar 

  36. Fintushel, R., Stern, R.: Knots, links, and 4-manifolds. Invent. Math 134, 363–400 (1998). ( dg-ga/9612014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Ganzell, S.: Ends of 4-manifolds. Top. Proc. 30:223–236 (2006). available also at http://faculty.smcm.edu/sganzell/ends

  38. Golubitsky, M., Guillemin, V.: Stable Mappings and their Singularities. Graduate Texts in Mathematics 14. Springer Verlag, New York-Heidelberg-Berlin (1973)

    Book  MATH  Google Scholar 

  39. Gompf, R.E.: Three exotic \(R^4\)’s and other anomalies. J. Differ. Geom. 18, 317–328 (1983)

    MATH  MathSciNet  Google Scholar 

  40. Gompf, R.: An infinite set of exotic \({\mathbb{R}}^4\)’s. J. Differ. Geom. 21, 283–300 (1985)

    MATH  MathSciNet  Google Scholar 

  41. Gompf, R.E., Stipsicz, A.I.: 4-Manifolds and Kirby Calculus. American Mathematical Society, Providence (1999)

    Book  MATH  Google Scholar 

  42. Hendriks, H.: Applications de la theore d’ obstruction en dimension 3. Bull. Soc. Math. Fr. Mem. 53, 81–196 (1977)

    MATH  MathSciNet  Google Scholar 

  43. W. Jaco and P. Shalen. Seifert fibered spaces in 3-manifolds. Memoirs of American Mathematical Society, vol. 21, AMS (1979)

  44. Kuhlmann, M.: Quantum field theory. In Standford Encyclopedia of Philosophy. available online: http://plato.stanford.edu/entries/quantum-field-theory/ (2012)

  45. LeBrun, C.: Four-manifolds without einstein metrics. Math. Res. Lett. 3, 133–147 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  46. Milnor, J.: A unique decomposition theorem for 3-manifolds. Am. J. Math. 84, 1–7 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  47. Mostow, G.D.: Quasi-conformal mappings in \(n\)-space and the rigidity of hyperbolic space forms. Publ. Math. IHS 34, 53–104 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  48. Rolfson, D.: Knots and Links. Publish or Prish, Berkeley (1976)

    Google Scholar 

  49. Scott, P.: The geometries of 3-manifolds. Bull. Lond. Math. Soc. 15, 401–487 (1983)

    Article  MATH  Google Scholar 

  50. Scorpan, A.: The Wild Worlds of 4-Manifolds. AMS, Providence, Rhode Island. See also www.ams.org/bookpages/fourman (2005)

  51. Sładkowski, J.: Strongly gravitating empty spaces (1999). Preprint gr-qc/9906037

  52. Sładkowski, J.: Gravity on exotic \({\mathbb{R}}^{4}\) with few symmetries. Int. J. Mod. Phys. D 10, 311–313 (2001)

    Article  ADS  MATH  Google Scholar 

  53. Steenrod, N.: Topology of Fibre Bundles. Princeton University Press, Princeton (1999)

    MATH  Google Scholar 

  54. Taylor, L.R.: Impossible metric conditions on exotic \({{R}}^4\)’s (2005). arXiv:math/0510450

Download references

Acknowledgments

This work was partly supported (T.A.) by the LASPACE grant. The authors acknowledged for all mathematical discussions with Duane Randall, Robert Gompf and Terry Lawson. Furthermore we thank the two anonymous referees for pointing out some errors and limitations in a previous version as well for all helpful remarks to increase the readability of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Asselmeyer-Maluga.

Appendices

Appendix A: Connected and boundary-connected sum of manifolds

Now we will define the connected sum \(\#\) and the boundary connected sum \(\natural \) of manifolds. Let \(M,N\) be two \(n\)-manifolds with boundaries \(\partial M,\partial N\). The connected sum \(M\#N\) is the procedure of cutting out a disk \(D^{n}\) from the interior \(int(M)\setminus D^{n}\) and \(int(N)\setminus D^{n}\) with the boundaries \(S^{n-1}\sqcup \partial M\) and \(S^{n-1}\sqcup \partial N\), respectively, and gluing them together along the common boundary component \(S^{n-1}\). The boundary \(\partial (M\#N)=\partial M\sqcup \partial N\) is the disjoint sum of the boundaries \(\partial M,\partial N\). The boundary connected sum \(M\natural N\) is the procedure of cutting out a disk \(D^{n-1}\) from the boundary \(\partial M\setminus D^{n-1}\) and \(\partial N\setminus D^{n-1}\) and gluing them together along \(S^{n-2}\) of the boundary. Then the boundary of this sum \(M\natural N\) is the connected sum \(\partial (M\natural N)=\partial M\#\partial N\) of the boundaries \(\partial M,\partial N\).

Appendix B: Spin \(\frac{1}{2}\) from space a la Friedman and Sorkin

As shown by Friedman and Sorkin [35], the calculation of the angular momentum in the ADM formalism is connected to special diffeomorphisms \(R(\theta )\) (rotation parallel to the boundary w.r.t. the angle \(\theta \)). So, one can speak of spin \(\frac{1}{2}\), in case of \(R(2\pi )=-1\). Interestingly, these diffeomorphisms are well-defined on all hyperbolic 3-manifolds.

In the following we made use of the work [35] in the definition of the angular momentum in ADM formalism. In this formalism, one has the 3-manifold \(\varSigma \) together with a time-like foliation of the 4-manifold \(\varSigma \times {\mathbb {R}}\). For simplicity, we consider the interior of the 3-manifold or we assume a 3-manifold without boundary. The configuration space \({\mathcal {M}}\) in the ADM formalism is the space of all Riemannian metrics of \(\varSigma \) modulo diffeomorphisms. On this space we define the linear functional \(\psi :\mathcal {M}\rightarrow \mathbb {C}\) calling it a state. In case of a many-component object like a spinor one has the state \(\psi :\mathcal {M}\rightarrow \mathbb {C}^{n}\). Let \(g_{ab}\) be a metric on \(\varSigma \) and we define the generalized position operator

$$\begin{aligned} \hat{g}_{ab}\psi (g)=g_{ab}\psi (g) \end{aligned}$$

together with the conjugated momentum

$$\begin{aligned} \hat{\pi }^{ab}\psi (g)=-i\frac{\delta }{\delta g_{ab}}\psi (g). \end{aligned}$$

Let \(\phi _{\alpha }\) with \(\alpha =1,2,3\) be vector fields fulfilling the commutator rules \([\phi _{\alpha },\phi _{\beta }]=-\epsilon _{\alpha \beta \gamma }\phi _{\gamma }\) generating an isometric realization of the \(SO(3)\) group on the 3-manifold \(\varSigma \). The angular momentum corresponding to the initial point \((g_{ab},\pi ^{ab})\) with the conjugated momentum \(\pi ^{ab}=(16\pi )^{-1}(-K^{ab}+g^{ab}K)\sqrt{g}\) (in the ADM formalism) and the extrinsic curvature \(K_{ab}\) is given by

$$\begin{aligned} J_{\alpha }=-\int \limits _{\varSigma }\mathcal {L}_{\phi _{\alpha }}(g_{ab})\pi ^{ab}\, d^{3}x \end{aligned}$$

with the Lie derivative \({\mathcal {L}}_{\phi _{\alpha }}\) along \(\phi _{\alpha }\). The action of the corresponding operator \(\hat{J}_{\alpha }\) on the state \(\psi (g)\) can be calculated to be

$$\begin{aligned} \hat{J}_{\alpha }\psi (g)=-i\frac{d}{d\theta }\psi \circ R_{\alpha }(\theta )^{*}(g)|_{\theta =0} \end{aligned}$$

where \(R_{\alpha }(\theta )\) is a 1-parameter subgroup of diffeomorphisms generated by \(\phi _{\alpha }\). Then a rotation will be generated by

$$\begin{aligned} \exp (2\pi i\hat{J})\psi =\psi \circ R(2\pi )^{*}. \end{aligned}$$

Now a state \(\psi \) carries spin \(\frac{1}{2}\) iff \(\psi \circ R(2\pi )^{*}=-\psi \) or \(R(2\pi )=-1\). In this case the diffeomorphism \(R(2\pi )\) is not located in the component of the diffeomorphism group which is connected to the identity (or equally it is not generated by coordinate transformations).

Appendix C: Scalar curvature and energy density

Let us consider a Friedmann–Robertson–Walker-metric

$$\begin{aligned} ds^{2}=dt^{2}-a(t)^{2}h_{ik}dx^{i}dx^{k} \end{aligned}$$

on \(N\times [0,1]\) with metric \(h_{ik}\) on \(N\) and the Friedmann equation

$$\begin{aligned} \left( \frac{\dot{a}(t)}{c\cdot a(t)}\right) ^{2}+\frac{k}{a(t)^{2}}=\kappa \frac{\rho }{3} \end{aligned}$$

with the scaling factor \(a(t)\), curvature \(k=0,\pm 1\) and \(\kappa =\frac{8\pi G}{c^{2}}\). As an example we consider a 3-dimensional submanifold \(N\) with energy density \(\rho _{N}\) and curvature \(R_{N}\) (related to \(h\)) fixed embedded in the space-time. Next we assume that the 3-manifold \(N\) possesses a homogenous metric of constant curvature. For a fixed time \(t\), the scalar curvature of \(N\) is proportional to

$$\begin{aligned} R_{N}\sim \frac{3k}{a(t)^{2}} \end{aligned}$$

and by using the Friedmann equation above, one obtains

$$\begin{aligned} \rho _{N}=\frac{1}{\kappa }R_{N}+\rho _{c} \end{aligned}$$

with the critical density

$$\begin{aligned} \rho _{c}=\frac{3}{\kappa }\left( \frac{\dot{a}(t)}{c\cdot a(t)}\right) ^{2}=\frac{3H^{2}}{\kappa } \end{aligned}$$

and the Hubble constant \(H\)

$$\begin{aligned} H=\frac{\dot{a}}{c\cdot a}. \end{aligned}$$

The total energy of \(N\) is given by

$$\begin{aligned} E_{N}=\int \limits _{N}\rho _{N}\,\sqrt{h}d^{3}x=\frac{1}{\kappa }\int \limits _{N}R_{N}\sqrt{h}d^{3}x+\rho _{c}\cdot vol(N)\,. \end{aligned}$$
(21)

For a space with constant curvature \(R_{N}\) we obtain

$$\begin{aligned} E_{N}=\left( \frac{1}{\kappa }R_{N}+\rho _{c}\right) \cdot vol(N) \end{aligned}$$
(22)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asselmeyer-Maluga, T., Brans, C.H. How to include fermions into general relativity by exotic smoothness. Gen Relativ Gravit 47, 30 (2015). https://doi.org/10.1007/s10714-015-1872-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-015-1872-x

Keywords

Navigation