Skip to main content
Log in

Dynamical systems analysis of an interacting dark energy model in the brane scenario

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this paper, we investigate the background dynamics in brane cosmology when dark energy is coupled to dark matter by a suitable interaction. Here we consider an homogeneous and isotropic Friedmann–Robertson–Walker brane model and the evolution equations are reduced to an autonomous system by suitable transformation of variables. The nature of critical points are analyzed by evaluating the eigenvalues of linearized Jacobi matrix. Finally, the classical stability of the model is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akama, K.: Lect. Notes Phys. 176, 267 (1982)

    Article  ADS  Google Scholar 

  2. Rubakov, V.A., Shaposhnikov, M.E.: Phys. Lett. B 125, 139 (1983)

    Article  ADS  Google Scholar 

  3. Gibbons, G.W., Wiltshire, D.L.: Nucl. Phys. B 287, 717 (1987)

    Article  ADS  Google Scholar 

  4. Horava, P., Witten, E.: Nucl. Phys. B 460, 506 (1996)

    Article  ADS  MATH  Google Scholar 

  5. Horava, P., Witten, E.: Nucl. Phys. B 475, 94 (1996)

    Article  ADS  MATH  Google Scholar 

  6. Arkani-Hamed, N., Dimopoulos, S., Dvali, G.R.: Phys. Lett. B 429, 263 (1998)

    Article  ADS  Google Scholar 

  7. Antoniadis, I., Arkani-Hamed, N., Dimopoulos, S., Dvali, G.R.: Phys. Lett. B 436, 257 (1998)

    Article  ADS  Google Scholar 

  8. Kaloper, N.: Phys. Rev. D 60, 123506 (1999)

    Article  ADS  Google Scholar 

  9. Randall, L., Sundrum, R.: Phys. Rev. Lett. 83, 3370 (1999)

    Article  ADS  MATH  Google Scholar 

  10. Kaluza, T.: Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) k1, 966 (1921)

    Google Scholar 

  11. Klein, O.: Z. Phys. 37, 895 (1926)

    Article  ADS  MATH  Google Scholar 

  12. Randall, L., Sundrum, R.: Phys. Rev. Lett. 83, 4690 (1999)

    Article  ADS  MATH  Google Scholar 

  13. Hawkins, R.M., Lidsey, J.E.: Phys. Rev. D 63, 041301 (2001)

    Article  ADS  Google Scholar 

  14. For a review on brane—world cosmology, see, e.g., Langlois, D.: Prog. Theor. Phys. 148 (Suppl.), 181 (2003)

  15. Garriga, J., Tanaka, T.: Phys. Rev. Lett. 84, 2778 (2000)

    Article  ADS  MATH  Google Scholar 

  16. Giddings, S.B., Katz, E., Randzll, L.: J. High Energy Phys. 0003, 023 (2000)

    Article  ADS  Google Scholar 

  17. Riess, A.G., Strolger, L.-G., Casertano, S., Ferguson, H.C., Mobasher, B., et al.: New Hubble Space Telescope Discoveries of Type Ia supernovae at \(z {\>}= 1 \): narrowing constraints on the early behavior of dark energy. Astrophys. J. 659, 98–121 (2007)

    Article  ADS  Google Scholar 

  18. Davis, T.M., Mortsell, E., Sollerman, J., Becker, A.C., Blondin, S., et al.: Scrutinizing exotic cosmological models using ESSENCE supernova data combined with other cosmological probes. Astrophys. J. 666, 716–725 (2007)

    Article  ADS  Google Scholar 

  19. MichaelWood-Vasey, W., et al.: Observational constraints on the nature of the dark energy: first cosmological results from the ESSENCE supernova survey. Astrophys. J. 666, 694–715 (2007)

    Article  ADS  Google Scholar 

  20. Tegmark, M., et al.: Cosmological parameters from SDSS and WMAP. Phys. Rev. D 69, 103501 (2004)

    Article  ADS  Google Scholar 

  21. Jarosik, N., Bennett, C.L., Dunkley, J., Gold, B., Greason, M.R., et al.: Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: sky maps, systematic errors, and basic results. Astrophys. J. Suppl. 192, 14 (2011)

    Article  ADS  Google Scholar 

  22. Larson, D., Dunkley, J., Hinshaw, G., Komatsu, E., Nolta, M.R., et al.: Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: power spectra and WMAP-derived parameters. Astrophys. J. Suppl. 192, 16 (2011)

    Article  ADS  Google Scholar 

  23. Komatsu, E., et al.: Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. 192, 18 (2011)

    Article  ADS  Google Scholar 

  24. Sotiriou, T.P., Faraoni, V.: Rev. Mod. Phys. 82, 451 (2010)

    Article  ADS  MATH  Google Scholar 

  25. Nojiri, S., Odintsov, S.D.: Phys. Rep. 505, 59 (2011)

    Article  ADS  Google Scholar 

  26. Wu, Y.-B., et al.: Phys. Lett. B 717, 323 (2012)

    Article  ADS  Google Scholar 

  27. Capozziello, S.: Int. J. Mod. Phys. Rev. D 11, 483 (2002)

    Article  ADS  MATH  Google Scholar 

  28. Nojiri, S., Odintsov, S.D.: Phys. Rev. D 74, 086005 (2006)

    Article  ADS  Google Scholar 

  29. Starobinsky, A.A.: Phys. Lett. B 91, 99 (1980)

    Article  ADS  Google Scholar 

  30. Kerner, R.: Gen. Relativ. Gravit. 14, 453 (1982)

    Article  ADS  Google Scholar 

  31. Barrow, J.D., Ottewi, A.: J. Phys. A 16, 2757 (1983)

    Article  ADS  Google Scholar 

  32. Faraoni, V.: Phys. Rev. D 74, 023520 (2006)

    Article  ADS  Google Scholar 

  33. Schmidth, H.J.: Int. J. Geom. Math. Phys. 4, 209 (2007)

    Article  Google Scholar 

  34. Nojiri, S., Odintsov, S.D.: Gen. Relativ. Gravit 36, 1765 (2004)

    Article  ADS  MATH  Google Scholar 

  35. Nojiri, S., Odintsov, S.D.: Mod. Phys. Lett. A 19, 627 (2004)

    Article  ADS  MATH  Google Scholar 

  36. Abdalla, M.C.B., Nojiri, S., Odintsov, S.D.: Class. Quantum Grav. 22, 235 (2005)

    Article  Google Scholar 

  37. Nojiri, S., Odintsov, S.D.: Phys. Lett. B 576, 5 (2003)

    Article  ADS  MATH  Google Scholar 

  38. Carroll, S.M., et al.: Phys. Rev. D 70, 043528 (2004)

    Article  ADS  Google Scholar 

  39. Capozziello, S., Nojiri, S., Odintsov, S.D.: Phys. Lett. B 634, 93 (2006)

    Article  ADS  Google Scholar 

  40. Nojiri, S., Odintsov, S.D., Sacz-Gomes, D.: Phys. Lett. B 681, 74 (2009)

    Article  ADS  Google Scholar 

  41. Bengochea, G.R., Ferraro, R.: Phys. Rev. D 79, 124019 (2005)

    Article  ADS  Google Scholar 

  42. Maeda, K.: Brane quintessence. Phys. Rev. D 64, 123525 (2001)

    Article  ADS  Google Scholar 

  43. Pedro, F.: Quintessence in brane cosmology. Phys. Lett. B 481, 353–359 (2000)

    Article  Google Scholar 

  44. Majumdar, A.S.: Phys. Rev. D 64, 083503 (2001)

    Article  ADS  Google Scholar 

  45. Nunes, N.J., Edmund, J.: Copeland. Phys. Rev. D 66, 043524 (2002)

    Article  ADS  Google Scholar 

  46. Sami, M., Dadhich, N.: TSPU Vestnik 44N7, 25–36 (2004)

  47. Gonzalez, T., Matos, T., Quiros, I., Vazquez-Gonzalez, A.: Phys. Lett. B 676, 161–167 (2009)

    Article  ADS  Google Scholar 

  48. Leyva, Y., Gonzalez, D., Gonzalez, T., Matos, T., Quiros, I.: Phys. Rev. D 80, 044026 (2009)

    Article  ADS  Google Scholar 

  49. Copeland, E.J., Liddle, A.R., Wands, D.: Phys. Rev. D 57, 4686–4690 (1998)

    Article  ADS  Google Scholar 

  50. Aguirregabiria, J.M., Lazkoz, R.: Phys. Rev. D 69, 123502 (2004)

    Article  ADS  Google Scholar 

  51. Lazkoz, R., Leon, G., Quiros, I.: Phys. Lett. B 649, 103–110 (2007)

    Article  ADS  MATH  Google Scholar 

  52. Fang, W., Li, Y., Zhang, K.: Class. Quantum Grav. 26, 155005 (2009)

    Article  ADS  Google Scholar 

  53. Leon, G.: Class. Quantum Grav. 26, 035008 (2009)

    Article  ADS  Google Scholar 

  54. Genly Leon, Pavel Silveira, and Carlos R. Fadragas. Classical and Quantum Gravity: Nova Science Publishers, New York, USA, arXiv:1009.0689 [gr-qc] (2012)

  55. Leon, G., Fadragas, C.R.: Cosmological Dynamical Systems. LAP Lambert Academic Publishing, Germany (2011)

    Google Scholar 

  56. Oliveras, G., Atrio- Barandela, F., Pavon, D.: Phys. Rev. D 71, 063523 (2005)

    Article  ADS  Google Scholar 

  57. Oliveras, G., Atrio- Barandela, F., Pavon, D.: Phys. Rev. D 74, 043521 (2006)

    Article  ADS  Google Scholar 

  58. Das, S., Corasaniti, P.S., Khoury, J.: Phys. Rev. D 73, 083501 (2006)

    Article  ADS  Google Scholar 

  59. Amendola, L., Gasperini, M., Plazza, F.: Phys. Rev. D 74, 127302 (2006)

    Article  ADS  Google Scholar 

  60. Campos, A., Sopuerta, C.F.: Phys. Rev. D 63, 104012 (2001)

    Article  ADS  Google Scholar 

  61. Campos, A., Sopuerta, C.F.: Phys. Rev. D 64, 104011 (2001)

    Article  ADS  Google Scholar 

  62. Coley, A.A.: Phys. Rev. D 66, 023512 (2002)

    Article  ADS  Google Scholar 

  63. Coley, A.A.: astro-ph /0504226

  64. Langlois, D.: Brane cosmology: an introduction. Prog. Theor. Phys. Suppl. 148, 181–212 (2003)

    Article  ADS  Google Scholar 

  65. Brax, P., van de Bruck, C.: Class. Quantum Grav. 20, R201–R232 (2003)

    Article  ADS  MATH  Google Scholar 

  66. Langlois, D.: Cosmology of brane-worlds. astro-ph/0403579 (2004)

  67. Maartens, R.: Brane world gravity. Living Rev. Rel. 7, 7 (2004)

    Google Scholar 

  68. Bowcock, P., Charmousis, C., Gregory, R.: Class. Quantum Grav. 17, 4745–4764 (2000)

    Article  ADS  MATH  Google Scholar 

  69. Costa, A.A., Xu, X.D., Wang, B., Ferreira, E.G.M., Abdalla, E.: Phys. Rev. D 89, 103531 (2014)

    Article  ADS  Google Scholar 

  70. Boehmer, C.G., Caldera-Cabral, G., Lazkoz, R., Maartens, R.: Phys. Rev. D 78, 023505 (2008)

    Article  ADS  Google Scholar 

  71. Chen, X., Gong Y., Saridakis, E.N.: 0812.1117 (arXiv) (2009)

  72. Goheer, N., Dunsby, P.K.S.: Phys. Rev. D 67, 103513 (2003)

    Article  ADS  Google Scholar 

  73. Goheer, N., Dunsby, P.K.S.: Phys. Rev. D 66, 043527 (2002)

    Article  ADS  Google Scholar 

  74. Escobar, D., Fadragas, C.R., Leon, G., Leyva, Y.: arXiv:1110.1736v3 [gr-qc]

  75. Piazza, F., Tsujikawa, S.: JCAP 0407, 004 (2004)

    Article  ADS  Google Scholar 

  76. Mahata, N., Chakraborty, S.: Gen. Relativ. Gravit. 46, 1721 (2014)

    Article  ADS  Google Scholar 

  77. Zhou, S.-Y.: Phys. Lett. B 660, 7–12 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

One of the authors (S.C.) is thankful to UGC-DRS programme, in the Department of Mathematics, J.U., S.C. is also thankful to IUCAA, Pune for research facilities at Library.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subenoy Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S.K., Chakraborty, S. Dynamical systems analysis of an interacting dark energy model in the brane scenario. Gen Relativ Gravit 47, 22 (2015). https://doi.org/10.1007/s10714-015-1866-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-015-1866-8

Keywords

Navigation