Skip to main content
Log in

Reconstruction of domain wall universe and localization of gravity

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We construct a four-dimensional domain wall universe using the Brans–Dicke type gravity with two scalar fields. We give a formulation where for arbitrarily given warp and scale factors, we construct an action which reproduces both the warp and scale factors as a solution of the Einstein equation and the field equations given by the action. This formulation could be described as a reconstruction. We show that the model does not contain ghosts with negative kinetic term and that the localization of gravity occurs as in the Randall–Sundrum model. It should be noted that in the equation of the graviton, there appear extra terms related to the extra dimension, which might affect the fluctuations in the inflation epoch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akama, K.: Lect. Notes Phys. 176, 267 (1982). hep-th/0001113

    Article  ADS  Google Scholar 

  2. Randall, L., Sundrum, R.: Phys. Rev. Lett. 83, 3370 (1999). hep-ph/9905221

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Randall, L., Sundrum, R.: Phys. Rev. Lett. 83, 4690–4693 (1999). hep-th/9906064

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Dvali, G.R., Gabadadze, G., Porrati, M.: Phys. Lett. B 485, 208 (2000). hep-th/0005016

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Deffayet, C.: Phys. Lett. B 502, 199 (2001). arXiv:hep-th/0010186

  6. Deffayet, C., Dvali, G.R., Gabadadze, G.: Phys. Rev. D 65, 044023 (2002). astro-ph/0105068

    Article  ADS  MathSciNet  Google Scholar 

  7. Nojiri, S., Odintsov, S.D., Zerbini, S.: Phys. Rev. D 62, 064006 (2000). arXiv:hep-th/0001192

  8. Hawking, S.W., Hertog, T., Reall, H.S.: Phys. Rev. D 63, 083504 (2001). arXiv:hep-th/0010232

  9. Nojiri, S., Odintsov, S.D.: Phys. Lett. B 484, 119 (2000). arXiv:hep-th/0004097

  10. Lukas, A., Ovrut, B.A., Stelle, K.S., Waldram, D.: Phys. Rev. D 59, 086001 (1999). hep-th/9803235

    Article  ADS  MathSciNet  Google Scholar 

  11. Kaloper, N.: Phys. Rev. D 60, 123506 (1999). hep-th/9905210

    Article  ADS  MathSciNet  Google Scholar 

  12. Chamblin, H.A., Reall, H.S.: Nucl. Phys. B 562, 133 (1999). hep-th/9903225

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. DeWolfe, O., Freedman, D.Z., Gubser, S.S., Karch, A.: Phys. Rev. D 62, 046008 (2000). hep-th/9909134

    Article  ADS  MathSciNet  Google Scholar 

  14. Gremm, M.: Phys. Lett. B 478, 434 (2000). hep-th/9912060

    Article  ADS  Google Scholar 

  15. Csaki, C., Erlich, J., Hollowood, T.J., Shirman, Y.: Nucl. Phys. B 581, 309 (2000). hep-th/0001033

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Gremm, M.: Phys. Rev. D 62, 044017 (2000). hep-th/0002040

    Article  ADS  Google Scholar 

  17. Kobayashi, S., Koyama, K., Soda, J.: Phys. Rev. D 65, 064014 (2002). hep-th/0107025

    Article  ADS  MathSciNet  Google Scholar 

  18. Slatyer, T.R., Volkas, R.R.: JHEP 0704, 062 (2007). hep-ph/0609003

    Article  ADS  MathSciNet  Google Scholar 

  19. Toyozato, Y., Bamba, K., Nojiri, S.: Phys. Rev. D 87(6), 063008 (2013). arxiv:1202.5375[hep-th]

  20. Nojiri, S., Odintsov, S.D.: Phys. Rep. 505, 59 (2011). arxiv:1011.0544[gr-qc]

  21. Bamba, K., Nojiri, S., Odintsov, S.D.: Phys. Rev. D 85, 044012 (2012). arxiv:1107.2538[hep-th]

  22. Capozziello, S., Nojiri, S., Odintsov, S.D.: Phys. Lett. B 632, 597 (2006). arXiv:hep-th/0507182

  23. Nojiri, S., Saridakis, EN.: Astrophys. Space Sci. 1 (347) 2013 arxiv:1301.2686[hep-th]

  24. Nojiri, S., Odintsov, S.D.: Gen. Relativ. Gravit. 38, 1285 (2006). hep-th/0506212

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are grateful to S. D. Odintsov for the discussion when he stayed in Nagoya University as a JSPS fellow. S.N. is supported by the JSPS Grant-in-Aid for Scientific Research (S) # 22224003 and (C) # 23540296.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin’ichi Nojiri.

Appendix: Explicit expressions of connections and curvatures in five dimensions

Appendix: Explicit expressions of connections and curvatures in five dimensions

In this “Appendix”, we give explicit expressions for the connections and curvatures in five dimensional spacetime, whose metric is given by

$$\begin{aligned} g_{AB}=\begin{pmatrix} -L^2 \mathrm {e}^{u(w,t)}&{}&{}&{}&{}\\ &{} L^2 \mathrm {e}^{u(w,t)}\frac{a(t)^2}{1-kr^2} &{} &{} &{} \\ &{} &{} L^2 \mathrm {e}^{u(w,t)}a(t)^2r^2 &{} &{} \\ &{} &{} &{} L^2 \mathrm {e}^{u(w,t)}a(t)^2r^2\sin ^2\theta &{} \\ &{} &{} &{} &{} 1 \end{pmatrix}. \end{aligned}$$
(45)

The connections are given by

$$\begin{aligned} \Gamma ^t_{tt}&= \frac{1}{2}\dot{u},\quad \Gamma ^w_{tt}=\frac{1}{2}L^2e^uu^\prime , \quad \Gamma ^r_{rt}=\Gamma ^\theta _{\theta t}=\Gamma ^\phi _{\phi t}=\frac{\dot{a}}{a}+\frac{1}{2}\dot{u}, \nonumber \\ \Gamma ^t_{tw}&= \Gamma ^r_{rw}=\Gamma ^\theta _{\theta w}=\Gamma ^\phi _{\phi w}=\frac{1}{2}u^\prime , \nonumber \\\Gamma ^t_{ij}&= L^{-2} \mathrm {e}^{-u}\left( \frac{\dot{a}}{a}+\frac{1}{2}\dot{u}\right) g_{ij}, \quad \Gamma ^r_{rr}=\frac{kr}{1-kr^2}, \quad \Gamma ^w_{ij}=-\frac{1}{2}u^\prime g_{ij} ,\nonumber \\ \Gamma ^\theta _{\theta r}&= \Gamma ^\phi _{\phi r}=\frac{1}{r} , \nonumber \\\Gamma ^r_{\theta \theta }&= -r(1-kr^2) , \quad \Gamma ^\phi _{\phi \theta }=\cot \theta , \quad \Gamma ^r_{\phi \phi }=-r(1-kr^2)\sin ^2\theta ,\nonumber \\ \Gamma ^\theta _{\phi \phi }&= -\cos \theta \sin \theta . \end{aligned}$$
(46)

The Ricci curvatures have the following forms:

$$\begin{aligned} R_{tt}&=\left[ -\frac{1}{2}u^{\prime \prime }-u^{\prime 2}+\frac{3}{2}L^{-2} \mathrm {e}^{-u}\left( \ddot{u}+\frac{\dot{a}\dot{u}}{a} +2\frac{\ddot{a}}{a}\right) \right] g_{tt} ,\nonumber \\R_{ij}&=\left[ -\frac{1}{2}u^{\prime \prime }-u^{\prime 2}+\frac{1}{2}L^{-2} \mathrm {e}^{-u}\left( \ddot{u}+5\frac{\dot{a}\dot{u}}{a} +2\frac{\ddot{a}}{a}+4\frac{\dot{a}^2}{a^2}+\dot{u}^2+4\frac{k}{a^2}\right) \right] g_{ij} ,\nonumber \\R_{ww}&=-2u^{\prime \prime }-u^{\prime 2} \, \nonumber \\R_{tw}&=-\frac{3}{2}\dot{u}^\prime . \end{aligned}$$
(47)

The scalar curvatures is

$$\begin{aligned} R=-4u^{\prime \prime }-5u^{\prime 2}+3L^{-2} \mathrm {e}^{-u}\left( \ddot{u}+\frac{1}{2}\dot{u}^2 +3\frac{\dot{a}\dot{u}}{a}+2\frac{\ddot{a}}{a}+2\frac{\dot{a}^2}{a^2}+2\frac{k}{a^2}\right) . \end{aligned}$$
(48)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higuchi, M., Nojiri, S. Reconstruction of domain wall universe and localization of gravity. Gen Relativ Gravit 46, 1822 (2014). https://doi.org/10.1007/s10714-014-1822-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1822-z

Keywords

Navigation