Skip to main content
Log in

Gravitational entropy of Kerr black holes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Classical invariants of General Relativity can be used to approximate the entropy of the gravitational field. In this work, we study two proposed estimators based on scalars constructed out from the Weyl tensor, in Kerr spacetime. In order to evaluate Clifton, Ellis and Tavakol’s proposal, we calculate the gravitational energy density, gravitational temperature, and gravitational entropy of the Kerr spacetime. We find that in the frame we consider, Clifton et al.’s estimator does not reproduce the Bekenstein–Hawking entropy of a Kerr black hole. The results are compared with previous estimates obtained by the authors using the Rudjord–Gr\(\varnothing \)n–Hervik approach. We conclude that the latter represents better the expected behaviour of the gravitational entropy of black holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Since the Bel–Robinson tensor has dimensions of \(L^{-4}\), it is necessary to take the square of this quantity to obtain energy densities and pressures with the correct dimensionality [16].

  2. A vector field \(\xi ^{a}\)is hypersurface orthogonal if and only if \(\xi _{[a}\nabla _{b}{\xi _{c}}_{]} =0\) (see for instance [22]). It can be shown that the vector \(z_{a}\) given by Eq. (17) satisfies \(z_{[a}\nabla _{b}{z_{c}}_{]} =0\).

  3. For a formal definition of improper integral see the Appendix and Ref. [25].

  4. Let \(\Omega \subseteq \mathfrak {R}^{p}\) be a non-compact domain for which each bounded part of the frontier is negligible. We say that the sequence \(\left( D_{\mathrm{n}}\right) _{n \in \mathbb {N}}\) of measurable compact domains is exhausting \(\Omega \) iff for any compact \(K \subset \Omega \) there exists \(n_{0} \in \mathbb {N}\) such that \(K \subset D_\mathrm{n}\) for all \(n \ge n_{0}\).

References

  1. Hawking, S.W.: Black hole explosions? Nature 248, 30–31 (1974)

    Article  ADS  Google Scholar 

  2. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bekenstein, J.D.: Black holes and the second law. Lett. Nuovo Cimento 4, 737–740 (1972)

    Article  ADS  Google Scholar 

  4. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bekenstein, J.D.: Generalized second law of thermodynamics in black holes. Phys. Rev. D 9, 3292–3300 (1974)

    Article  ADS  Google Scholar 

  6. Bardeen, J.M., Carter, B., Hawking, S.W.: The four laws of black hole mechanics. Commun. Math. Phys. 31, 161–170 (1973)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Penrose, R.: General relativity, an Einstein centenary survey. In: Hawking, S.W., Israel, W. (eds.) Singularity and Time-Asymmetry, pp. 581–638. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  8. Rudjord, Ø., Grøn, Ø., Hervik, S.: The Weyl curvature conjeture and black hole entropy. Phys. Scr. 77(5), 055901 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. Clifton, T., Ellis, G.F.R., Tavakol, R.: A gravitational entropy proposal. Class. Quantum Gravity 30, 125009 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bel, L.: Sur la radiation gravitationnelle. C. R. Acad. Sci. 247, 1094–1096 (1958)

    MATH  MathSciNet  Google Scholar 

  11. Bel, L.: Introduction d’un tenseur du quatrieme order. C. R. Acad. Sci. 248, 1297 (1959)

    MATH  MathSciNet  Google Scholar 

  12. Robinson, I.: Unpublished lectures at King College, London (1958)

  13. Robinson, I.: On the Bel–Robinson tensor. Class. Quantum Gravity 14, 4331 (1997)

    Article  Google Scholar 

  14. Breton, N., Feinstein, A., Ibañez, J.: The Bel–Robinson tensor for the collision of gravitational plane waves. Gen. Relativ. Gravit. 25, 267–273 (1993)

    Article  ADS  Google Scholar 

  15. Krishnasamy, I.: Quasilocal energy and the Bel–Robinson tensor. Gen. Relativ. Gravit. 17, 621–627 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  16. Bonilla, M.A.G., Senovilla, J.M.M.: Some properties of the Bel and Bel-Robinson tensors. Gen. Relativ. Gravit. 29, 91–116 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870–892 (1976)

    Article  ADS  Google Scholar 

  18. Gibbons, G.W., Hawking, S.W.: Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 15, 2738–2751 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  19. Doran, C.: A new form of the Kerr solution. Phys. Rev. D 61, 067503 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  20. Gullstrand, A.: Allgemeine lösung des statichen einkörperproblems in der Einsteinschen gravitationstheorie. Arkiv. Mat. Astron. Fys. 16, 1–15 (1922)

    Google Scholar 

  21. Painlevé, P.: La mécanique classique et la théorie de la relativité. C. R. Acad. Sci. Paris 173, 677–680 (1921)

    MATH  Google Scholar 

  22. Wald, R.M.: General Relativity. The University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  23. Garat, A., Price, R.H.: Nonexistence of conformally flat slices of the Kerr spacetime. Phys. Rev. D 61, 124011 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  24. Visser, M.: Lorentzian Wormholes: From Einstein To Hawking. AIP Series in Computational and Applied Mathematical Physics. Springer, New York (1996)

    Google Scholar 

  25. Courant, R.: Differential and Integral Calculus, vol. II. Blackie & Son, Great Britain (1961)

    Google Scholar 

  26. Predoi, M., Blan, T.: Mathematical analysis, vol. II. Integral Calculus. Editura Universitaria, Craiova (2005)

    Google Scholar 

  27. Romero, G.E., Thomas, R., Pérez, D.: Gravitational entropy of black holes and wormholes. Int. J. Theor. Phys. 51, 925–942 (2012)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by PICT 2012-00878, Préstamo BID (ANPCyT). We thank Santiago E. Perez Bergliaffa for useful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Pérez.

Appendix

Appendix

1.1 Definition of improper integral

Let \(\Omega \subseteq \mathfrak {R}^{p}\) be a non-compact domain, and let \(f: \Omega \rightarrow \mathfrak {R}\) be integrable on each measurable compact domain \(D \subset \Omega \). We say that \(f\) is improperly integrable on \(\Omega \) iff for every increasing sequence of measurable compact domains, \(\left( D_{\mathrm{n}}\right) _{n \in \mathbb {N}}\), which is exhaustingFootnote 4 \(\Omega \), the secuence:

$$\begin{aligned} \sum \limits _\mathrm{n} = \left( \int _{D_\mathrm{n}} f \ d\mu \right) _\mathrm{n \in \mathbb {N}} \end{aligned}$$

is convergent. In such a case we note:

$$\begin{aligned} \lim _{\mathrm{n} \rightarrow \infty } \int _{D_\mathrm{n}} f \ d\mu = \int _{\Omega } f \ d\mu , \end{aligned}$$

and we call it improper integral of \(f\) on \(D\). Alternatively we say that the integral of \(f\) on \(\Omega \) is convergent [26].

1.2 Proof of the divergence of the improper integral:

$$\begin{aligned} I = \int \int _{D} \frac{1}{h_{i}(r)} d\theta \; dr = \int \int _{D} \frac{1}{\gamma _{i} \left( r_{*}-r\right) } \ \ \ \ \ \ \ \ \gamma _{i} \in \mathfrak {R}^{+}, \end{aligned}$$
(57)

where

$$\begin{aligned} D = \left\{ \left( r,\theta \right) \in \mathfrak {R}^{2} / \ r_{-} \le r \le r_{*} \ \wedge \ \theta _{*1} \le \theta \le \theta _{*2} \right\} , \end{aligned}$$
(58)

Since \(h_{i}(r)\) does not depend on \(\theta \), we can simply integrate (57) on this coordinate:

$$\begin{aligned} \int _{R} \frac{\theta _{*2}-\theta _{*1}}{\gamma _{i} \left( r_{*}-r\right) } dr, \end{aligned}$$
(59)

where,

$$\begin{aligned} R = \left\{ r \in \mathfrak {R}/ r_{-} \le r < r_{*}\right\} . \end{aligned}$$
(60)

The function \(1/\gamma _{i} \left( r_{*}-r\right) \) diverges at \(r = r*\). We define a subsequence of closed subregions \(R_\mathrm{n}\) where the latter integral is well-defined:

$$\begin{aligned} R_{n} = \left\{ r \in \mathfrak {R}/ r_{-} \le r < r_{*}-\left( 1/n\right) \right\} , \end{aligned}$$
(61)

with \(n \in {\mathbb N}\), such that

$$\begin{aligned} \lim _{n \rightarrow \infty } R_{n} \rightarrow R. \end{aligned}$$
(62)

We integrate the function \(1 = 1/h_{i}(r)\) over the domain \(R_{n}\) as follows:

$$\begin{aligned} \int _{R_{n}} \frac{dr}{h_{i}(r)}&= \int _{R_{n}} \frac{dr}{\gamma _{i} \left( r_{*}-r\right) } = \frac{-1}{\gamma _{i}} \ln {\left( r_{*}-r\right) } \ \vert _{r_{-}}^{r_{*}-\left( 1/n\right) }\nonumber \\&= \frac{-1}{\gamma _{i}} \left[ \ln \left( r_{*}-r_{*}+(1/n)\right) -\ln \left( r_{*}-r_{-}\right) \right] . \end{aligned}$$
(63)

The limit of the latter equation when \(n \rightarrow \infty \) does not exist. Therefore, the integral given by Eq. (57) is divergent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez, D., Romero, G.E. Gravitational entropy of Kerr black holes. Gen Relativ Gravit 46, 1774 (2014). https://doi.org/10.1007/s10714-014-1774-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1774-3

Keywords

Navigation