Skip to main content
Log in

A regularisation approach to causality theory for \(C^{1,1}\)-Lorentzian metrics

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We show that many standard results of Lorentzian causality theory remain valid if the regularity of the metric is reduced to \(C^{1,1}\). Our approach is based on regularisations of the metric adapted to the causal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See, however, [25] where it is shown that indeed \(\exp _p\) is even strongly differentiable at \(0\) with derivative \(\text {id}_{T_pM}\).

References

  1. Choquet-Bruhat, Y., Geroch, R.: Global aspects of the Cauchy problem in general relativity. Commun. Math. Phys. 14, 329–335 (1969)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Klainerman, S., Rodnianski, I.: Rough solution for the Einstein vacuum equations. Ann. Math. 161(2), 1143–1193 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Maxwell, D.: Rough solutions of the Einstein constraint equations. J. Reine Angew. Math. 590, 1–29 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Klainerman, S., Rodnianski, I., Szeftel, J.: Overview of the proof of the bounded \(L^2\) curvature conjecture, arXiv:1204.1772 [gr-qc], 2012

  5. Lichnerowicz, A.: Théories relativistes de la gravitation et de l’électromgnétisme. Masson, Paris (1955)

    MATH  Google Scholar 

  6. Griffiths, J., Podolský, J.: Exact Space-Times in Einstein’s General Relativity. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  7. Penrose, R.: Techniques of Differential Topology in Relativity (Conf. Board of the Mathematical Sciences Regional Conf. Series in Applied Mathematics vol 7). SIAM, Philadelphia, PA (1972)

  8. O’Neill, B.: Semi-Riemannian Geometry. With Applications to Relativity. Pure and Applied Mathematics 103. Academic Press, New York (1983)

    Google Scholar 

  9. Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian Geometry (Monographs and Textbooks in Pure and Applied Mathematics vol 202) 2nd edn. New York, Dekker (1996)

  10. Kriele, M.: Spacetime. Foundations of General Relativity and Differential Geometry. Lecture Notes in Physics 59. Springer, Berlin (1999)

  11. Minguzzi, E., Sanchez, M.: The causal hierarchy of spacetimes in recent developments in pseudo-Riemannian geometry. ESI Lect. Math. Phys., Eur. Math. Soc. Publ. House, Zürich (2008)

  12. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  13. Senovilla, J.M.M.: Singularity theorems and their consequences. Gen. Relativ. Gravit. 30(5), 701–848 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. García-Parrado, A., Senovilla, J.M.M.: Causal structures and causal boundaries. Class. Quantum Gravity 22, R1–R84 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Chruściel, P.T.: Elements of causality theory, arXiv:1110.6706

  16. Clarke, C.J.S.: The analysis of spacetime singularities. Cambridge Lect. Notes Phys. 1. Cambridge University Press (1993)

  17. Sorkin, R.D., Woolgar, E.: A causal order for spacetimes with \(C^0\) Lorentzian metrics: Proof of compactness of the space of causal curves class. Quantum Gravity 13, 1971–1994 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fathi, A., Siconolfi, A.: On smooth time functions. Math. Proc. Camb. Philos. Soc. 155, 1–37 (2011)

    MATH  Google Scholar 

  19. Chruściel, P.T., Grant, J.D.E.: On Lorentzian causality with continuous metrics. Class. Quantum Gravity 29(14), 145001 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Hartman, P.: On geodesic coordinates. Am. J. Math. 73, 949–954 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hartman, P., Wintner, A.: On the problems of geodesics in the small. Am. J. Math. 73, 132–148 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  22. Whitehead, J.H.C.: Convex regions in the geometry of paths. Q. J. Math., Oxf. Ser. 3, 33–42, (1932). Addendum, ibid. 4, 226 (1933)

  23. Kunzinger, M., Steinbauer, R., Stojković, M.: The exponential map of a \(C^{1,1}\)-metric. Differ. Geom. Appl. 34, 14–24 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen, B.-L., LeFloch, P.: Injectivity radius of Lorentzian manifolds. Commun. Math. Phys. 278, 679–713 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Minguzzi, E.: Convex neighborhoods for Lipschitz connections and sprays, arXiv:1308.6675

  26. Hirsch, M.W.: Differential Topology. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  27. Grosser, M., Kunzinger, M., Oberguggenberger, M., Steinbauer, R.: Geometric Theory of Generalized Functions. Kluwer, Dordrecht (2001)

    MATH  Google Scholar 

  28. Hörmann, G., Kunzinger, M., Steinbauer, R.: Wave equations on non-smooth space-times. Evolution equations of hyperbolic and Schrödinger type, pp. 163–186, Progr. Math., 301, Birkhäuser/Springer, Berlin (2012)

  29. Amann, H.: Ordinary Differential Equations. De Gruyter, Berlin (1990)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank James D. E. Grant for helpful discussions. The authors acknowledge the support of FWF projects P23714 and P25326, as well as OeAD project WTZ CZ 15/2013. We are indebted to the referees of this paper for several comments that have led to substantial improvements in the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Vickers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunzinger, M., Steinbauer, R., Stojković, M. et al. A regularisation approach to causality theory for \(C^{1,1}\)-Lorentzian metrics. Gen Relativ Gravit 46, 1738 (2014). https://doi.org/10.1007/s10714-014-1738-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1738-7

Keywords

Navigation