Skip to main content
Log in

Entanglement entropy and gravity/condensed matter correspondence

  • Review Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The entanglement entropy has been very important in various subjects such as the quantum information theory, condensed matter physics and quantum gravity. Especially, for more than twenty years, this quantity has been studied by many people in order to obtain a quantum mechanical interpretation of the gravitational entropy such as the black hole entropy. We will introduce recent progresses toward this long-standing problem in quantum gravity by applying the idea of holography, especially the AdS/CFT correspondence found in string theory. We will explain the holographic formula which computes the entanglement entropy of quantum field theories in terms of the area of minimal surfaces in general relativity. We will also review the recent application of AdS/CFT correspondence to condensed matter physics from the viewpoint of entanglement entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  2. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975). [Erratum-ibid. 46, 206 (1976)]

    Article  ADS  MathSciNet  Google Scholar 

  3. ’t Hooft, G.: Dimensional reduction in quantum gravity. arXiv:gr-qc/9310026

  4. Susskind, L.: The World as a hologram. J. Math. Phys. 36, 6377 (1995). [arXiv:hep-th/9409089]

    Google Scholar 

  5. Bigatti, D., Susskind, L.: TASI lectures on the holographic principle. arXiv:hep-th/0002044

  6. Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)] [arXiv:hep-th/9711200]

  7. Gubser, S.S., Klebanov, I.R., Polyakov, A.M.: Gauge theory correlators from non-critical string theory. Phys. Lett. B 428, 105 (1998). [arXiv:hep-th/9802109]

    Google Scholar 

  8. Witten, E.: Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253 (1998). [arXiv:hep-th/9802150]

  9. Aharony, O., Gubser, S.S., Maldacena, J.M., Ooguri, H., Oz, Y.: Large N field theories, string theory and gravity. Phys. Rept. 323, 183 (2000). [arXiv:hep-th/9905111]

    Google Scholar 

  10. Ryu, S., Takayanagi, T.: Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett. 96, 181602 (2006). [arXiv:hep-th/0603001]

    Google Scholar 

  11. Ryu, S., Takayanagi, T.: Aspects of holographic entanglement entropy. JHEP 0608, 045 (2006). [arXiv:hep-th/0605073]

  12. Lewkowycz, A., Maldacena, J.: Generalized gravitational entropy. JHEP 1308, 090 (2013). [arXiv:1304.4926 [hep-th]]

  13. Hubeny, V.E., Rangamani, M., Takayanagi, T.: A covariant holographic entanglement entropy proposal. JHEP 0707, 062 (2007). [arXiv:0705.0016 [hep-th]]

  14. Nishioka, T., Ryu, S., Takayanagi, T.: Holographic entanglement entropy: an overview. J. Phys. A 42, 504008 (2009). [arXiv:0905.0932 [hep-th]]

  15. Takayanagi, T.: Entanglement entropy from a holographic viewpoint. Class. Quantum Gravity 29, 153001 (2012). [arXiv:1204.2450 [gr-qc]]

  16. Solodukhin, S.N.: Entanglement entropy of black holes. Living Rev. Rel. 14, 8 (2011). [arXiv:1104.3712 [hep-th]]

  17. McGreevy, J.: Holographic duality with a view toward many-body physics. Adv. High Energy Phys. 2010, 723105 (2010). [arXiv:0909.0518 [hep-th]]

  18. ’t Hooft, G.: On the quantum structure of a black hole. Nucl. Phys. B 256, 727 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  19. Bombelli, L., Koul, R.K., Lee, J.H., Sorkin, R.D.: A quantum source of entropy for black holes. Phys. Rev. D 34, 373 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Srednicki, M.: Entropy and area. Phys. Rev. Lett. 71, 666 (1993). [arXiv:hep-th/9303048]

    Google Scholar 

  21. Susskind, L., Uglum, J.: Black hole entropy in canonical quantum gravity and superstring theory. Phys. Rev. D 50, 2700 (1994). [arXiv:hep-th/9401070]

  22. Fiola, T.M., Preskill, J., Strominger, A., Trivedi, S.P.: Black hole thermodynamics and information loss in two-dimensions. Phys. Rev. D 50, 3987 (1994). [arXiv:hep-th/9403137]

    Google Scholar 

  23. Jacobson, T.: Black hole entropy and induced gravity. arXiv:gr-qc/9404039

  24. Solodukhin, S.N.: The Conical singularity and quantum corrections to entropy of black hole. Phys. Rev. D 51, 609 (1995). [arXiv:hep-th/9407001]

    Google Scholar 

  25. Solodukhin, S.N.: On ’Nongeometric’ contribution to the entropy of black hole due to quantum corrections. Phys. Rev. D 51, 618 (1995). [arXiv:hep-th/9408068]

    Google Scholar 

  26. Fursaev, D.V., Solodukhin, S.N.: On one loop renormalization of black hole entropy. Phys. Lett. B 365, 51 (1996). [arXiv:hep-th/9412020]

    Google Scholar 

  27. Hawking, S., Maldacena, J.M., Strominger, A.: DeSitter entropy, quantum entanglement and AdS/CFT. JHEP 0105, 001 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  28. Maldacena, J.M.: Eternal black holes in Anti-de-Sitter. JHEP 0304, 021 (2003). [arXiv:hep-th/0106112]

  29. Calabrese, P., Cardy, J.: Entanglement entropy and conformal field theory. J. Phys. A 42, 504005 (2009). [arXiv:0905.4013 [cond-mat.stat-mech]]

  30. Casini, H., Huerta, M.: Entanglement entropy in free quantum field theory. J. Phys. A 42, 504007 (2009). [arXiv:0905.2562 [hep-th]]

  31. Riera, A., Latorre, J.I.: Area law and vacuum reordering in harmonic networks. Phys. Rev. A 74, 052326 (2006). [arXiv:quant-ph/0605112]

    Google Scholar 

  32. Latorre, J.I.: Entanglement entropy and the simulation of quantum mechanics. J. Phys. A 40, 6689 (2007). [arXiv:quant-ph/0611271]

    Google Scholar 

  33. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008). [quant-ph/0703044 [QUANT-PH]]

    Google Scholar 

  34. Eisert, J., Cramer, M., Plenio, M.B.: Area laws for the entanglement entropy—a review. Rev. Mod. Phys. 82, 277 (2010). [arXiv:0808.3773 [quant-ph]]

    Google Scholar 

  35. Nielsen, M., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000). See for example

    MATH  Google Scholar 

  36. Lieb, E.H., Ruskai, M.B.: A fundamental property of quantum-mechanical entropy. Phys. Rev. Lett. 30, 434–436 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  37. Lieb, E.H., Ruskai, M.B.: Proof of the strong subadditivity of quantum-mechanical entropy, J. Math. Phys. 14, 1938–1941. With an appendix by B, Simon (1973)

  38. Casini, H., Huerta, M.: A finite entanglement entropy and the c-theorem. Phys. Lett. B 600, 142 (2004). [arXiv:hep-th/0405111]

  39. Casini, H., Huerta, M.: A c-theorem for the entanglement entropy. J. Phys. A 40, 7031 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  40. Casini, H., Huerta, M.: On the RG running of the entanglement entropy of a circle. arXiv:1202.5650 [hep-th]

  41. Jafferis, D.L., Klebanov, I.R., Pufu, S.S., Safdi, B.R.: Towards the F-theorem: N \(=\) 2 field theories on the three-sphere. JHEP 1106, 102 (2011). [arXiv:1103.1181 [hep-th]]

  42. Plenio, M.B., Eisert, J., Dreissig, J., Cramer, M.: Entropy, entanglement, and area: analytical results for harmonic lattice systems. Phys. Rev. Lett. 94, 060503 (2005). [arXiv:quant-ph/0405142]

    Google Scholar 

  43. Plenio, M.B., Eisert, J., Dreissig, J., Cramer, M.: An entanglement-area law for general bosonic harmonic lattice systems. Phys. Rev. A 73, 012309 (2006). [arXiv:quant-ph/0505092]

    Google Scholar 

  44. Holzhey, C., Larsen, F., Wilczek, F.: Geometric and renormalized entropy in conformal field theory. Nucl. Phys. B 424, 443 (1994). [arXiv:hep-th/9403108]

    Google Scholar 

  45. Calabrese, P., Cardy, J.: Entanglement entropy and quantum field theory. J. Stat. Mech. 0406, P002 (2004). [arXiv:hep-th/0405152]

  46. Kabat, D.: Black hole entropy and entropy of entanglement. Nucl. Phys. B 453, 281 (1995). [arXiv:hep-th/9503016]

  47. Casini, H., Fosco, C.D., Huerta, M.: Entanglement and alpha entropies for a massive Dirac field in two dimensions. J. Stat. Mech. 0507, P007 (2005). [arXiv:cond-mat/0505563]

  48. Casini, H., Huerta, M.: Entanglement and alpha entropies for a massive scalar field in two dimensions. J. Stat. Mech. 0512, P012 (2005). [arXiv:cond-mat/0511014]

  49. Casini, H., Huerta, M.: Universal terms for the entanglement entropy in 2+1 dimensions. Nucl. Phys. B 764, 183 (2007). [arXiv:hep-th/0606256]

    Google Scholar 

  50. Shiba, N.: Entanglement entropy of two black holes and entanglement entropic force. Phys. Rev. D 83, 065002 (2011). [arXiv:1011.3760 [hep-th]]

  51. Shiba, N.: Entanglement entropy of two spheres. arXiv:1201.4865 [hep-th]

  52. Bousso, R.: A covariant entropy conjecture. JHEP 9907, 004 (1999). [arXiv:hep-th/9905177]

  53. Bousso, R.: Holography in general space-times. JHEP 9906, 028 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  54. Bousso, R.: The holographic principle for general backgrounds. Class. Quantum Gravity 17, 997 (2000). [arXiv:hep-th/9911002]

  55. Headrick, M., Takayanagi, T.: A holographic proof of the strong subadditivity of entanglement entropy. Phys. Rev. D 76, 106013 (2007). [arXiv:0704.3719 [hep-th]]

  56. Hayden, P., Headrick, M., Maloney, A.: Holographic mutual information is monogamous. arXiv:1107.2940 [hep-th]

  57. Linden, N., Winter, A.: A new inequality for the von Neumann entropy. Commun. Math. Phys. 259, 129 (2005). [arXiv:quant-ph/0406162]

    Google Scholar 

  58. Cadney, J., Linden, N., Winter, A.: Infinitely many constrained inequalities for the von Neumann, entropy. arXiv:1107.0624

  59. Fursaev, D.V.: Proof of the holographic formula for entanglement entropy. JHEP 0609, 018 (2006). [arXiv:hep-th/0606184]

  60. Headrick, M.: Entanglement Renyi entropies in holographic theories. arXiv:1006.0047 [hep-th]

  61. Casini, H., Huerta, M.: Infinite divisibility, entanglement entropy, and minimal surfaces. arXiv:1203.4007 [hep-th]

  62. Brown, J.D., Henneaux, M.: Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity. Commun. Math. Phys. 104, 207 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Casini, H., Huerta, M., Myers, R.C.: Towards a derivation of holographic entanglement entropy. JHEP 1105, 036 (2011). [arXiv:1102.0440 [hep-th]]

  64. Hung, L.Y., Myers, R.C., Smolkin, M., Yale, A.: Holographic calculations of Renyi entropy. JHEP 1112, 047 (2011). [arXiv:1110.1084 [hep-th]]

  65. Klebanov, I.R., Pufu, S.S., Sachdev, S., Safdi, B.R.: Renyi entropies for free field theories. arXiv:1111.6290 [hep-th]

  66. Fursaev, D.V.: Entanglement Renyi entropies in conformal field theories and holography. arXiv:1201.1702 [hep-th]

  67. Solodukhin, S.N.: Entanglement entropy, conformal invariance and extrinsic geometry. Phys. Lett. B 665, 305 (2008). [arXiv:0802.3117 [hep-th]]

  68. Myers, R.C., Sinha, A.: Seeing a c-theorem with holography. Phys. Rev. D 82, 046006 (2010). [arXiv:1006.1263 [hep-th]]

  69. Myers, R.C., Sinha, A.: Holographic c-theorems in arbitrary dimensions. JHEP 1101, 125 (2011). [arXiv:1011.5819 [hep-th]]

  70. Schwimmer, A., Theisen, S.: Entanglement entropy, trace anomalies and holography. Nucl. Phys. B 801, 1 (2008). [arXiv:0802.1017 [hep-th]]

  71. Liu, H., Mezei, M.: A refinement of entanglement entropy and the number of degrees of freedom, arXiv:1202.2070 [hep-th]

  72. Lohmayer, R., Neuberger, H., Schwimmer, A., Theisen, S.: Numerical determination of entanglement entropy for a sphere. Phys. Lett. B 685, 222 (2010). [arXiv:0911.4283 [hep-lat]]

  73. Casini, H., Huerta, M.: Entanglement entropy for the n-sphere. Phys. Lett. B 694, 167 (2010). [arXiv:1007.1813 [hep-th]]

  74. Dowker, J.S.: Hyperspherical entanglement entropy. J. Phys. A 43, 445402 (2010). [arXiv:1007.3865 [hep-th]]

  75. Solodukhin, S.N.: Entanglement entropy of round spheres. Phys. Lett. B 693, 605 (2010). [arXiv:1008.4314 [hep-th]]

  76. Hung, L.Y., Myers, R.C., Smolkin, M.: Some calculable contributions to holographic entanglement entropy. JHEP 1108, 039 (2011). [arXiv:1105.6055 [hep-th]]

  77. Hertzberg, M.P., Wilczek, F.: Some calculable contributions to entanglement entropy. Phys. Rev. Lett. 106, 050404 (2011). [arXiv:1007.0993 [hep-th]]

    Google Scholar 

  78. Witten, E.: Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 2, 505 (1998). [arXiv:hep-th/9803131]

  79. Klebanov, I.R., Strassler, M.J.: Supergravity and a confining gauge theory: duality cascades and chiSB-resolution of naked singularities. JHEP 0008, 052 (2000). [arXiv:hep-th/0007191]

    Google Scholar 

  80. Nishioka, T., Takayanagi, T.: AdS bubbles, entropy and closed string tachyons. JHEP 0701, 090 (2007). [arXiv:hep-th/0611035]

  81. Klebanov, I.R., Kutasov, D., Murugan, A.: Entanglement as a probe of confinement. Nucl. Phys. B 796, 274 (2008). [arXiv:0709.2140 [hep-th]]

  82. Hawking, S.W., Page, D.N.: Thermodynamics of black holes in Anti-De Sitter space. Commun. Math. Phys. 87, 577 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  83. Nakagawa, Y., Nakamura, A., Motoki, S., Zakharov, V.I.: Entanglement entropy of SU(3) Yang–Mills theory. PoS LAT2009, 188 (2009) [arXiv:0911.2596 [hep-lat]]

  84. Nakagawa, Y., Nakamura, A., Motoki, S., Zakharov, V.I.: Quantum entanglement in SU(3) lattice Yang–Mills theory at zero and finite temperatures. PoS LATTICE2010, 281 (2010) [arXiv:1104.1011 [hep-lat]]

  85. Velytsky, A.: Entanglement entropy in d+1 SU(N) gauge theory. Phys. Rev. D 77, 085021 (2008). [arXiv:0801.4111 [hep-th]]

  86. Fujita, M., Nishioka, T., Takayanagi, T.: Geometric entropy and hagedorn/deconfinement transition. JHEP 0809, 016 (2008). [arXiv:0806.3118 [hep-th]]

  87. Fujita, M., Ohki, H.: Geometric entropy and third order phase transition in d \(=\) 4 N \(=\) 2 SYM with flavor. JHEP 1008, 056 (2010). [arXiv:1006.0344 [hep-th]]

  88. Fujita, M., Li, W., Ryu, S., Takayanagi, T.: Fractional quantum hall effect via holography: Chern–Simons, edge states, and hierarchy. [arXiv:0901.0924 [hep-th]]

  89. Azeyanagi, T., Li, W., Takayanagi, T.: On string theory duals of Lifshitz-like fixed points. JHEP 0906, 084 (2009). [arXiv:0905.0688 [hep-th]]

  90. Tonni, E.: Holographic entanglement entropy: near horizon geometry and disconnected regions. JHEP 1105, 004 (2011). [arXiv:1011.0166 [hep-th]]

  91. Furukawa, S., Pasquier, V., Shiraishi, J.: Mutual information and Boson radius in c \(=\) 1 critical systems in one dimension. Phys. Rev. Lett. 102, 170602 (2009). [arXiv:0809.5113 [cond-mat.stat-mech]]

    Google Scholar 

  92. Casini, H., Huerta, M.: Remarks on the entanglement entropy for disconnected regions. JHEP 0903, 048 (2009). [arXiv:0812.1773 [hep-th]]

  93. Casini, H., Huerta, M.: Reduced density matrix and internal dynamics for multicomponent regions. [arXiv:0903.5284 [hep-th]]

  94. Calabrese, P., Cardy, J., Tonni, E.: Entanglement entropy of two disjoint intervals in conformal field theory. J. Stat. Mech. 0911, P11001 (2009). [arXiv:0905.2069 [hep-th]]

  95. Calabrese, P., Cardy, J., Tonni, E.: Entanglement entropy of two disjoint intervals in conformal field theory II. J. Stat. Mech. 1101, P01021 (2011). [arXiv:1011.5482 [hep-th]]

  96. Hung, L.Y., Myers, R.C., Smolkin, M.: On holographic entanglement entropy and higher curvature gravity. JHEP 1104, 025 (2011). [arXiv:1101.5813 [hep-th]]

  97. de Boer, J., Kulaxizi, M., Parnachev, A.: Holographic entanglement entropy in lovelock gravities. JHEP 1107, 109 (2011). [arXiv:1101.5781 [hep-th]]

  98. Dong, X.: Holographic entanglement entropy for general higher derivative gravity. JHEP 1401, 044 (2014). [arXiv:1310.5713 [hep-th], arXiv:1310.5713]

  99. Camps, J.: Generalized entropy and higher derivative gravity. arXiv:1310.6659 [hep-th]

  100. Banados, M., Teitelboim, C., Zanelli, J.: The black hole in three-dimensional space–time. Phys. Rev. Lett. 69, 1849 (1992). [arXiv:hep-th/9204099]

    Google Scholar 

  101. Hubeny, V.E., Liu, H., Rangamani, M.: Bulk-cone singularities and signatures of horizon formation in AdS/CFT. JHEP 0701, 009 (2007). [arXiv:hep-th/0610041]

    Google Scholar 

  102. Chesler, P.M., Yaffe, L.G.: Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang–Mills plasma. Phys. Rev. Lett. 102, 211601 (2009). [arXiv:0812.2053 [hep-th]]

    Google Scholar 

  103. Chesler, P.M., Yaffe, L.G.: Boost invariant flow, black hole formation, and far-from-equilibrium dynamics in N \(=\)  4 supersymmetric Yang–Mills theory. arXiv:0906.4426 [hep-th]

  104. Bhattacharyya, S., Minwalla, S.: Weak field black hole formation in asymptotically AdS space–times. JHEP 0909, 034 (2009). [arXiv:0904.0464 [hep-th]]

  105. Das, S.R., Nishioka, T., Takayanagi, T.: Probe Branes, time-dependent couplings and thermalization in AdS/CFT. arXiv:1005.3348 [hep-th]

  106. Hubeny, V.E., Rangamani, M.: A holographic view on physics out of equilibrium. arXiv:1006.3675 [hep-th]

  107. Calabrese, P., Cardy, J.L.: Evolution of entanglement entropy in one-dimensional systems. J. Stat. Mech. 0504, P010 (2005). [arXiv:cond-mat/0503393]

  108. Calabrese, P., Cardy, J.L.: Entanglement and correlation functions following a local quench: a conformal field theory approach. J. Stat. Mech. (2007) P010004 [arXiv:0708.3750]

  109. Calabrese, P., Cardy, J.L.: Time-dependence of correlation functions following a quantum quench. Phys. Rev. Lett. 96, 136801 (2006). [arXiv:cond-mat/0601225]

    Google Scholar 

  110. Asplund, C.T., Avery, S.G.: Evolution of entanglement entropy in the D1–D5 brane system. Phys. Rev. D 84, 124053 (2011). [arXiv:1108.2510 [hep-th]]

  111. Abajo-Arrastia, J., Aparicio, J., Lopez, E.: Holographic evolution of entanglement entropy. JHEP 1011, 149 (2010). [arXiv:1006.4090 [hep-th]]

  112. Aparicio, J., Lopez, E.: Evolution of two-point functions from holography. JHEP 1112, 082 (2011). [arXiv:1109.3571 [hep-th]]

  113. Albash, T., Johnson, C.V.: Evolution of holographic entanglement entropy after thermal and electromagnetic quenches. arXiv:1008.3027 [hep-th]

  114. Takayanagi, T., Ugajin, T.: Measuring black hole formations by entanglement entropy via coarse–graining. JHEP 1011, 054 (2010). [arXiv:1008.3439 [hep-th]]

  115. Balasubramanian, V., et al.: Thermalization of strongly coupled field theories. Phys. Rev. Lett. 106, 191601 (2011). [arXiv:1012.4753 [hep-th]]

    Google Scholar 

  116. Balasubramanian, V., et al.: Holographic thermalization. Phys. Rev. D 84, 026010 (2011). [arXiv:1103.2683 [hep-th]]

  117. Hubeny, V.E.: Holographic insights and puzzles. arXiv:1103.1999 [hep-th]

  118. Freivogel, B., McGreevy, J., Suh, S.J.: Exactly stable collective oscillations in conformal field theory. arXiv:1109.6013 [hep-th]

  119. Balasubramanian, V., Bernamonti, A., Copland, N., Craps, B., Galli, F.: Thermalization of mutual and tripartite information in strongly coupled two dimensional conformal field theories. Phys. Rev. D 84, 105017 (2011). [arXiv:1110.0488 [hep-th]]

    Google Scholar 

  120. Allais, A., Tonni, E.: Holographic evolution of the mutual information. JHEP 1201, 102 (2012). [arXiv:1110.1607 [hep-th]]

  121. Muller, B., Schafer, A.: Entropy creation in relativistic heavy ion collisions. Int. J. Mod. Phys. E 20, 2235 (2011). [arXiv:1110.2378 [hep-ph]]

  122. Keranen, V., Keski-Vakkuri, E., Thorlacius, L.: Thermalization and entanglement following a non-relativistic holographic quench. Phys. Rev. D 85, 026005 (2012). [arXiv:1110.5035 [hep-th]]

  123. Hubeny, V.E.: Extremal surfaces as bulk probes in AdS/CFT. arXiv:1203.1044 [hep-th]

  124. Roberts, M.M.: Time evolution of entanglement entropy from a pulse. arXiv:1204.1982 [hep-th]

  125. Callan, R., He, J., Headrick, M.: Strong subadditivity and the covariant holographic entanglement entropy formula. arXiv:1204.2309 [hep-th]

  126. Takayanagi, T.: Holographic dual of BCFT. Phys. Rev. Lett. 107, 101602 (2011). [arXiv:1105.5165 [hep-th]]

    Google Scholar 

  127. Fujita, M., Takayanagi, T., Tonni, E.: Aspects of AdS/BCFT. JHEP 1111, 043 (2011). [arXiv:1108.5152 [hep-th]]

  128. Gibbons, G.W., Hawking, S.W.: Action integrals and partition functions in quantum gravity. Phys. Rev. D 15, 2752 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  129. Cardy, J.L.: Conformal invariance and surface critical behavior. Nucl. Phys. B 240, 514 (1984)

    Article  ADS  Google Scholar 

  130. McAvity, D.M., Osborn, H.: Conformal field theories near a boundary in general dimensions. Nucl. Phys. B 455, 522 (1995). [arXiv:cond-mat/9505127]

    Google Scholar 

  131. Bak, D., Gutperle, M., Hirano, S.: A Dilatonic deformation of AdS(5) and its field theory dual. JHEP 0305, 072 (2003). [arXiv:hep-th/0304129]

    Google Scholar 

  132. Clark, A.B., Freedman, D.Z., Karch, A., Schnabl, M.: The Dual of Janus: an interface CFT. Phys. Rev. D 71, 066003 (2005). [arXiv:hep-th/0407073]

    Google Scholar 

  133. Azeyanagi, T., Karch, A., Takayanagi, T., Thompson, E.G.: Holographic calculation of boundary entropy. JHEP 0803, 054 (2008). [arXiv:0712.1850 [hep-th]]

  134. Cardy, J.L.: Boundary conformal field theory. arXiv:hep-th/0411189

  135. Affleck, I., Ludwig, A.W.W.: Universal noninteger ’ground state degeneracy’ in critical quantum systems. Phys. Rev. Lett. 67, 161 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  136. Berenstein, D.E., Corrado, R., Fischler, W., Maldacena, J.M.: The Operator product expansion for Wilson loops and surfaces in the large N limit. Phys. Rev. D 59, 105023 (1999). [arXiv:hep-th/9809188]

    Google Scholar 

  137. Balasubramanian, V., Kraus, P.: A Stress tensor for Anti-de Sitter gravity. Commun. Math. Phys. 208, 413 (1999). [arXiv:hep-th/9902121]

    Google Scholar 

  138. de Haro, S., Solodukhin, S.N., Skenderis, K.: Holographic reconstruction of space-time and renormalization in the AdS / CFT correspondence. Commun. Math. Phys. 217, 595 (2001). [arXiv:hep-th/0002230]

    Google Scholar 

  139. Zamolodchikov, A.B.: Irreversibility of the flux of the renormalization group in a 2D field theory. JETP Lett. 43, 730 (1986) [Pisma, Zh. Eksp. Teor. Fiz. 43, 565 (1986)]

  140. Friedan, D., Konechny, A.: On the boundary entropy of one-dimensional quantum systems at low temperature. Phys. Rev. Lett. 93, 030402 (2004). [arXiv:hep-th/0312197]

    Google Scholar 

  141. Freedman, D.Z., Gubser, S.S., Pilch, K., Warner, N.P.: Renormalization group flows from holography supersymmetry and a c theorem. Adv. Theor. Math. Phys. 3, 363 (1999). [arXiv:hep-th/9904017]

    Google Scholar 

  142. Yamaguchi, S.: Holographic RG flow on the defect and g theorem. JHEP 0210, 002 (2002). [hep-th/0207171]

  143. Ogawa, N., Takayanagi, T., Ugajin, T.: Holographic fermi surfaces and entanglement entropy. JHEP 1201, 125 (2012). [arXiv:1111.1023 [hep-th]]

  144. Huijse, L., Sachdev, S., Swingle, B.: Hidden Fermi surfaces in compressible states of gauge-gravity duality. Phys. Rev. B 85, 035121 (2012). [arXiv:1112.0573 [cond-mat.str-el]]

  145. Vidal, G.: Entanglement renormalization. Phys. Rev. Lett. 99, 220405 (2007). [arXiv:cond-mat/0512165]

  146. Swingle, B.: Entanglement renormalization and holography. arXiv:0905.1317 [cond-mat.str-el]

  147. Nozaki, M., Ryu, S., Takayanagi, T.: Holographic geometry of entanglement renormalization in quantum field theories. JHEP 1210, 193 (2012). [arXiv:1208.3469 [hep-th]]

  148. Bhattacharya, J., Nozaki, M., Takayanagi, T., Ugajin, T.: Thermodynamical property of entanglement entropy for excited states. Phys. Rev. Lett. 110(9), 091602 (2013) [arXiv:1212.1164]

    Google Scholar 

  149. Blanco, D.D., Casini, H., Hung, L.-Y., Myers, R.C.: Relative entropy and holography. JHEP 1308, 060 (2013). [arXiv:1305.3182 [hep-th]]

  150. Nozaki, M., Numasawa, T., Prudenziati, A., Takayanagi, T.: Dynamics of entanglement entropy from Einstein equation. Phys. Rev. D 88, 026012 (2013). [arXiv:1304.7100 [hep-th]]

  151. Bhattacharya, J., Takayanagi, T.: Entropic counterpart of perturbative Einstein equation. arXiv:1308.3792 [hep-th]

  152. Emparan, R.: Black hole entropy as entanglement entropy: a holographic derivation. JHEP 0606, 012 (2006). [arXiv:hep-th/0603081]

  153. Iwashita, Y., Kobayashi, T., Shiromizu, T., Yoshino, H.: Holographic entanglement entropy of de Sitter braneworld. Phys. Rev. D 74, 064027 (2006). [arXiv:hep-th/0606027]

    Google Scholar 

  154. Solodukhin, S.N.: Entanglement entropy of black holes and AdS/CFT correspondence. Phys. Rev. Lett. 97, 201601 (2006). [arXiv:hep-th/0606205]

    Google Scholar 

  155. Li, W., Takayanagi, T.: Holography and entanglement in Flat spacetime. Phys. Rev. Lett. 106, 141301 (2011). [arXiv:1010.3700 [hep-th]]

    Google Scholar 

  156. Bousso, R., Leichenauer, S., Rosenhaus, V.: Light-sheets and AdS/CFT, arXiv:1203.6619 [hep-th]

  157. Czech, B., Karczmarek, J.L., Nogueira, F., Van Raamsdonk, M.: The gravity dual of a density matrix. arXiv:1204.1330 [hep-th]

  158. Hubeny, V.E., Rangamani, M.: Causal holographic information. arXiv:1204.1698 [hep-th]

Download references

Acknowledgments

TT would like to thank all of his collaborators on this subject, especially Mathew Headrick, Veronika Hubeny, Tatsuma Nishioka, Mukund Rangamani and Shinsei Ryu. TT is very grateful to organizers of the GR20/Amaldi10 conference for the wonderful hospitality. TT is supported by JSPS Grant-in-Aid for Scientific Research (B) No. 25287058 and JSPS Grant-in-Aid for Challenging Exploratory Research No. 24654057. TT is also supported by World Premier International Research Center Initiative (WPI Initiative) from the Japan Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Takayanagi.

Additional information

This article belongs to the Topical Collection: The First Century of General Relativity: GR20/Amaldi10.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takayanagi, T. Entanglement entropy and gravity/condensed matter correspondence. Gen Relativ Gravit 46, 1693 (2014). https://doi.org/10.1007/s10714-014-1693-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1693-3

Keywords

Navigation