Skip to main content
Log in

Frame dragging with optical vortices

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

General Relativistic calculations in the linear regime have been made for electromagnetic beams of radiation known as optical vortices. These exotic beams of light carry a physical quantity known as optical orbital angular momentum. It is found that when a massive spinning neutral particle is placed along the optical axis, a phenomenon known as inertial frame dragging occurs. Our results are compared with those found previously for a ring laser and an order of magnitude estimate of the laser intensity needed for a precession frequency of 1 Hz is given for these “steady” beams of light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fowles, G.R., Cassidy, G.: Analytical Mechanics, 6th edn. Saunders, Fort Worth (1990)

    Google Scholar 

  2. Coles, P.: Einstein, Eddington, and the 1919 eclipse. In: Martinez, V.J., Trimble, V., Pons-Borderia, M.J. (eds.) Proceedings of International School on the Historical Development of Modern Cosmology, Valencia 2000, pp. 21–41. Astronomical Society of the Pacific, San Francisco, CA (2001)

    Google Scholar 

  3. von Soldner, J.G.: On the deflection of a light ray from its rectilinear motion. B. A. J., 161–172 (1804). http://books.google.com/books?id=PN43AAAAMAAJ&vq=soldner&source=gbs_navlinks_s

  4. Einstein, A.: Die Grundlage der allgemeinen Relativitatsheorie. Ann. Phys. (Leipzig) 49, 769 (1916)

    Article  ADS  MATH  Google Scholar 

  5. Dyson, F.W., Eddington, A.S., Davidson, C.: A determination of the deflection of light by the sun’s gravitational field, from observation made at the total eclipse of May 29, 1919. Philos. Trans. R. Soc. Lond. A 220, 291–333 (1920)

    Article  ADS  Google Scholar 

  6. Doeleman, S.S., et al.: Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Center. Nature 455, 78 (2008)

    Article  ADS  Google Scholar 

  7. Tolman, R.C., Ehrenfest, P., Podolsky, B.: On the gravitational field produced by light. Phys. Rev. 37, 602 (1931)

    Article  ADS  Google Scholar 

  8. Scully, M.O.: General-relativistic treatment of the gravitational coupling between laser beams. Phys. Rev. D 19, 3582 (1979)

    Article  ADS  Google Scholar 

  9. Mallet, R.L.: Weak gravitational field of the electromagnetic radiation in a ring laser. Phys. Lett. A 269, 214–217 (2000)

    Article  ADS  Google Scholar 

  10. Mallett, R.L.: The gravitational field of a circulating light beam. Found. Phys. 33, 1307 (2003)

    Article  MathSciNet  Google Scholar 

  11. Olum, K.D., Everett, A.: Can a circulating light beam produce a time machine. Found. Phys. Lett. 18, 379 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Allen, L., Beijersbergen, M.W., Spreeum, R.J.C., Woerdman, J.P.: Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992)

    Article  ADS  Google Scholar 

  13. Allen, L., Padgett, M.J., Babiker, M.: IV The orbital angular momentum of light. Prog. Opt. 39, 291–372 (1999)

    Article  MathSciNet  Google Scholar 

  14. van Enk, S.J., Nienhuis, G.: Eigenfunction description of laser beams and orbital angular momentum of light. Opt. Commun. 94, 147–158 (1992)

    Google Scholar 

  15. Beth, R.A.: Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50, 115–125 (1936)

    Article  ADS  Google Scholar 

  16. Heckenberg, N.R., Friese, M.E.J., Nieminen, T.A., Rubinsztein-Dunlop, H.: Mechanical effects of optical vortices. In: Vasnetsov, M., Staliunas, K. (eds). Optical Vortices, Vol. 228 of Horizons in World Physics. Nova Science, pp. 75–105 (1999)

  17. Babiker, M., Power, W.L., Allen, L.: Light-induced torque on moving atoms. Phys. Rev. Lett. 73, 1239 (1994)

    Article  ADS  Google Scholar 

  18. Andersen, M.F., Ryu, C., Clade, P., Natarajan, V., Vaziri, A., Helmerson, K., Phillips, W.D.: Quantized rotation of atoms from photons with orbital angular momentum. Phys. Rev. Lett. 97, 170406 (2006)

    Article  ADS  Google Scholar 

  19. Strohaber, J., Zhi, M., Sokolov, A.V., Kolomenskii, A.A., Paulus, G.G., Schuessler, H.A.: Coherent transfer of optical orbital angular momentum in multi-order Raman sideband generation. Opt. Lett. 37, 3411–3413 (2012)

    Article  ADS  Google Scholar 

  20. Siegman, A.E.: Lasers. University Science Books, Sausalito, CA (1986)

    Google Scholar 

  21. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  22. Hobson, M.P., Efstathiou, G.P., Lasenby, A.N.: General Relativity: An Introduction for Physicists. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  23. Yanovsky, V., et al.: Ultra-high intensity-300-TW laser at 0.1 Hz repetition rate. Opt. Express 3, 2109 (2008)

    Article  ADS  Google Scholar 

  24. Tajima, T., Mourou, G.: Zettawatt-exawatt lasers and their applications in ultrastrong-field physics. PRST-AB 5, 031301 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Strohaber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strohaber, J. Frame dragging with optical vortices. Gen Relativ Gravit 45, 2457–2465 (2013). https://doi.org/10.1007/s10714-013-1596-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-013-1596-8

Keywords

Navigation