Skip to main content
Log in

An interacting dark energy model in a non-flat universe

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this paper, an interacting dark energy model in a non-flat universe is studied, with taking interaction form \(C=\alpha H\rho _{de}\). And in this study a property for the mysterious dark energy is aforehand assumed, i.e. its equation of state \(w_{\Lambda }=-1\). After several derivations, a power-law form of dark energy density is obtained \(\rho _{\Lambda } \propto a^{-\alpha }\), here \(a\) is the cosmic scale factor, \(\alpha \) is a constant parameter introducing to describe the interaction strength and the evolution of dark energy. By comparing with the current cosmic observations, the combined constraints on the parameter \(\alpha \) is investigated in a non-flat universe. For the used data they include: the Union2 data of type Ia supernova, the Hubble data at different redshifts including several new published datapoints, the baryon acoustic oscillation data, the cosmic microwave background data, and the observational data from cluster X-ray gas mass fraction. The constraint results on model parameters are \(\Omega _{K}=0.0024\,(\pm 0.0053)^{+0.0052+0.0105}_{-0.0052-0.0103}, \alpha =-0.030\,(\pm 0.042)^{+0.041+0.079}_{-0.042-0.085}\) and \(\Omega _{0m}=0.282\,(\pm 0.011)^{+0.011+0.023}_{-0.011-0.022}\). According to the constraint results, it is shown that small constraint values of \(\alpha \) indicate that the strength of interaction is weak, and at \(1\sigma \) confidence level the non-interacting cosmological constant model can not be excluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Concretely, in Ref. [31] the used datasets include the SNIa Union2 data, the observational value of parameter \(A=0.469\pm 0.017\) for BAO data, the shift parameter \(R=1.725\pm 0.018\) for CMB data and the 9 H(z) data.

References

  1. Riess, A.G., et al.: Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. Ratra, B., Peebels, P.J.E.: Phys. Rev. D. 37, 3406 (1988)

    Article  ADS  Google Scholar 

  3. Cai, R.G.: Phys. Lett. B. 657, 228 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Lu, J.B., Wang, Y.T., Wu, Y.B., Wang, T.Q.: Eur. Phys. J. C 71, 1800 (2011)

    Article  ADS  Google Scholar 

  5. Lu, J.B., Wang, Y.T., Wu, Y.B.: Sci. China Phys. Mech. Astron. 55(9), 1713–1719 (2012)

    Article  ADS  Google Scholar 

  6. Xu, L.X., Wang, Y.T., Noh, H.: Phys. Rev. D. 84, 123004 (2011). http://arXiv:1112.5216

    Google Scholar 

  7. Xu, L.X.: Phys. Rev. D. 85, 123505 (2012). http://arXiv:1205.2130

    Google Scholar 

  8. Xu, L.X., Lu, J.B., Wang, Y.T.: Eur. Phys. J. C. 72, 1883 (2012). http://arXiv:1204.4798

    Google Scholar 

  9. Xu, L.X., Wang, Y.T., Noh, H.: Eur. Phys. J. C. 72, 1931 (2012). http://arXiv:1204.5571

  10. Zimdahl, W., Pavon, D.: Phys. Lett. B. 521, 133 (2001)

    Article  ADS  MATH  Google Scholar 

  11. Feng, C., Wang, B., Abdalla, E., Su, R.-K.: Phys. Lett. B. 665, 111 (2008)

    Article  ADS  Google Scholar 

  12. He, J.H., Wang, B., Abdalla, E.: Phys. Lett. B. 671, 139 (2009)

    Article  ADS  Google Scholar 

  13. Wang, B., Gong, Y.G., Abdalla, E.: Phys. Lett. B. 624, 141 (2005)

    Article  ADS  Google Scholar 

  14. Lu, J.B., Xu, L.X., Wu, Y.B., Liu, M.L., Li, T.Q.: Int. J. Mod. Phys. D. 22(9), 1350059 (2013)

    Article  ADS  Google Scholar 

  15. Abdalla, E., Wang, B.: Phys. Lett. B. 651, 89 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  16. Jamil, M., Rashid, M.A.: Eur. Phys. J. C. 56, 429 (2008)

    Article  ADS  MATH  Google Scholar 

  17. Bertolami, O., Pedro, F.G., Delliou, M.L.: Gen. Relativ. Gravit. 41, 2839 (2009)

    Article  ADS  MATH  Google Scholar 

  18. Amanullah, R., et al.: Supernova cosmology project collaboration. http://arXiv:astro-ph/1004.1711

  19. Simon, J., Verde, L., Jimenez, R.: Phys. Rev. D. 71, 123001 (2005)

    Article  ADS  Google Scholar 

  20. Moresco, M., Cimatti A., Jimenez R., et al.: http://arXiv:1201.3609

  21. Stern, D., Jimenez, R., Verde, L., Kamionkowski, M., Stanford, S.A.: http://arXiv:astro-ph/0907.3149

  22. Simon, J., et al.: Phys. Rev. D. 71, 123001 (2005)

    Article  ADS  Google Scholar 

  23. Riess, A.G., et al.: http://arXiv:0905.0695

  24. Gaztanñaga, E., Cabré, A., Hui, L.: http://arXiv:0807.3551

  25. Blake, C., et al.: http://arXiv:1108.2635

  26. Eisenstein, D.J., et al.: Astrophys. J. 633, 560 (2005)

    Article  ADS  Google Scholar 

  27. Percival, W.J., et al.: Mon. Not. Roy. Astron. Soc. 381, 1053 (2007)

    Article  ADS  Google Scholar 

  28. Percival, W.J., et al.: Mon. Not. R. Astron. Soc. 401, 2148 (2010). http://arXiv:astro-ph/0907.1660

  29. Komatsu, E., et al.: http://arXiv:astro-ph/1001.4538

  30. Allen, S.W., Rapetti, D.A., Schmidt, R.W., et al.: Mon. Not. Roy. Astron. Soc. 383, 879 (2008)

    Article  ADS  Google Scholar 

  31. Jetzer, P., Tortora, C.: Phys. Rev. D. 84, 043517 (2011). http://arXiv:1107.4610

  32. Bertolami, O., Gil Pedro, F., Le Delliou, M.: Phys. Lett. B. 654, 165–169 (2007)

    Article  ADS  Google Scholar 

  33. Cui, J., Zhang, X.: Phys. Lett. B. 690, 233–238 (2010). http://arXiv:1005.3587

    Google Scholar 

  34. Wang, B., Zang, J., Lin, C.-Y., Abdalla, E., Micheletti, S.: Nucl. Phys. B. 778, 69–84 (2007)

    Article  ADS  Google Scholar 

  35. Mohseni, S.H.: JCAP 0702, 026 (2007). http://arXiv:gr-qc/0701074

  36. Lu, J.B., Ma, L.N., Liu, M.L., Wu, Y.B.: Int. J. Mod. Phys. D. 21(1), 1250005 (2012)

    Article  ADS  Google Scholar 

  37. Nesseris, S., Perivolaropoulos, L.: Phys. Rev. D. 72, 123519 (2005)

    Article  ADS  Google Scholar 

  38. Acquaviva, V., Verde, L.: JCAP 0712, 001 (2007)

    Article  ADS  Google Scholar 

  39. Huang, Q.G., Li, M., Li, X., Wang, S.: Phys. Rev. D. 80, 083515 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  40. Lu, J.B., Saridakis, E.N., Setare, M.R., Xu, L.X.: JCAP 03, 031 (2010)

    Article  ADS  Google Scholar 

  41. Lu, J.B., et al.: Phys. Lett. B. 662, 87 (2008)

    Article  ADS  Google Scholar 

  42. Lu, J.B.: Phys. Lett. B. 680, 404 (2009)

    Article  ADS  Google Scholar 

  43. Guimaraes, A.C.C., Cunha, J.V., Lima, J.A.S.: JCAP 0910, 010 (2009)

    Article  ADS  Google Scholar 

  44. Szydlowski, M., Godlowski, W.: Phys. Lett. B. 633, 427 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Gannouji, R., Polarski, D.: JCAP 0805, 018 (2008)

    Article  Google Scholar 

  46. Alam, U., Sahni, V.: Phys. Rev. D. 73, 084024 (2006)

    Article  ADS  Google Scholar 

  47. Gong, Y.G., Zhu, X.M., Zhu, Z.H.: Mon. Not. Roy. Astron. Soc. 415, 1943C1949 (2011)

    Article  Google Scholar 

  48. Gong, Y.G., Wang, B., Cai, R.G.: J. Cosmol. Astropart. Phys. 04, 019 (2010)

    ADS  Google Scholar 

  49. Lazkoz, R., Majerotto, E.: JCAP 0707, 015 (2007)

    Article  ADS  Google Scholar 

  50. Lu, J.B., Xu, L.X.: Mod. Phys. Lett. A. 25, 737–747 (2010)

    Article  ADS  MATH  Google Scholar 

  51. Lu, J.B., Xu, L.X., Liu, M.L.: Phys. Lett. B. 699, 246–250 (2011)

    Article  ADS  Google Scholar 

  52. Samushia, L., Ratra, B.: Astrophys. J. 650, L5 (2006)

    Article  ADS  Google Scholar 

  53. Jimenez, R., Verde, L., Treu, T., Stern, D.: Astrophys. J. 593, 622 (2003)

    Article  ADS  Google Scholar 

  54. Zhang, T.J., et al.: Astrophys. J. 728, 35 (2011)

    Article  ADS  Google Scholar 

  55. Zhang, T.J., et al.: New. Astron. 14, 507C512 (2009)

    Google Scholar 

  56. Lu, J.B., Wang, W.P., Xu, L.X., Wu, Y.B.: Eur. Phys. J. Plus. 126, 92 (2011)

    Article  Google Scholar 

  57. Lu, J.B., Xu, L.X., Wu, Y.B., Liu, M.L.: Gen. Relativ. Gravit. 43, 819 (2011)

    Article  ADS  MATH  Google Scholar 

  58. Lu, J.B., Gao, S.S., Zhao, Y.Y., Wu, Y.B.: Eur. Phys. J. Plus. 127, 154 (2012)

    Article  Google Scholar 

  59. Nesseris, S., Perivolaropoulos, L.: JCAP 0701, 018 (2007)

    Article  ADS  Google Scholar 

  60. Lewis, A., Bridle, S.: Phys. Rev. D. 66, 103511 (2002). http://cosmologist.info/cosmomc/

  61. Rapetti, D., Allen, S.W., Weller, J.: Mon. Not. Roy. Astron. Soc. 360, 555 (2005)

    Article  ADS  Google Scholar 

  62. URL: http://www.stanford.edu/drapetti/fgas-module/

Download references

Acknowledgments

We thank the anonymous reviewer for her/his very instructive suggestions and comments, which have improved our paper greatly. The research work is supported by the National Natural Science Foundation of China (11147150, 11205078, 11175077), the Natural Science Foundation of Education Department of Liaoning Province (L2011189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbo Lu.

Appendix A: Discussions on taking interaction form \(C=\beta H\rho _{m}\)

Appendix A: Discussions on taking interaction form \(C=\beta H\rho _{m}\)

For taking interaction form \(C=\beta H\rho _{m}\), according to Eq. (5) one can derive the energy density of matter

$$\begin{aligned} \rho _{m}/\rho _{c}=\Omega _{0m}(1+z)^{3-\beta }. \end{aligned}$$
(31)

Using Eqs. (6) and (31), the density parameter of dark energy can be expressed as

$$\begin{aligned} \rho _{de}/\rho _{c}=\frac{\beta \Omega _{0m}}{3-\beta }(1+z)^{3-\beta }+\frac{3(1-\Omega _{0m})-\beta }{3-\beta }. \end{aligned}$$
(32)

The corresponding Friedmann equation in a non-flat universe is written as

$$\begin{aligned} H^{2}=H_{0}^{2}\left[ \frac{3\Omega _{0m}(1+z)^{3-\beta }}{3-\beta }+\frac{3-\beta -3\Omega _{0m}}{3-\beta }+\Omega _{K}(1+z)^{2}\right] . \end{aligned}$$
(33)

By fitting the combined datasets of SNIa+H(z)+BAO+CMB+\(f_{gas}\) to constrain this interacting model, the constraint results on cosmological parameters are plotted in Fig. 3 for the non-flat universe. From Fig. 3, we can see \(\beta =-0.0050\,(\pm 0.0056)^{+0.0055+0.0133}_{-0.0056-0.0108},\,\, \Omega _{0m}\!=\!0.282\,(\pm 0.011)^{+0.011+0.023}_{-0.011-0.021}, \Omega _{K}= -0.0018\,(\pm 0.0040)^{+0.0040+0.0079}_{-0.0040-0.0080}\) and \(Age(Gyr)=13.649\,(\pm 0.222)^{+0.219+0.440}_{-0.220-0.424}\), with \(\chi _\mathrm{min}=602.649\) and \(\chi _\mathrm{min}/dof=0.9596\). According to the constraint results, at \(1\sigma \) confidence level the non-interacting CC model (interacting parameter \(\beta =0\)) can not be excluded.

Fig. 3
figure 3

The \(2D\) contours with \(1\sigma \) and \(2\sigma \) confidence levels and 1-D distribution of interaction model parameters with \(C=\beta \)H\(\rho _{m}\) for using SNIa+H(z)+BAO+CMB+\(f_{gas}\) data in a non-flat universe. Solid lines are mean likelihoods of samples, and dotted lines are marginalized probabilities for 1-D distribution

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, J., Wu, Y., Liu, M. et al. An interacting dark energy model in a non-flat universe. Gen Relativ Gravit 45, 2023–2037 (2013). https://doi.org/10.1007/s10714-013-1576-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-013-1576-z

Keywords

Navigation