Skip to main content
Log in

A general method for constructing curved traversable wormholes in (2+1)-dimensional spacetime

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We develop a general method for constructing curved traversable wormholes in (2+1)-dimensional spacetime, by generating surfaces of revolution around smooth curves. Application of this method to a straight line gives the usual spherically symmetric wormholes. The physics behind (2+1)-d curved traversable wormholes is discussed based on solutions to the Einstein field equations when the tidal force is zero. The Einstein field equations are found to reduce to one equation whereby the mass-energy density varies linearly with the Ricci scalar, which signifies that our (2+1)-d curved traversable wormholes are supported by dust of ordinary and exotic matter without radial tension nor lateral pressure. With this, two examples of (2+1)-d curved traversable wormholes: the helical wormhole and the catenary wormhole, are constructed and we show that there exist geodesics through them supported by non-exotic matter. This general method is applicable to our (3+1)-d spacetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Morris, M.S., Thorne, K.S.: Am. J. Phys. 56(5), 395 (1988). doi:10.1119/1.15620. http://link.aip.org/link/?AJP/56/395/1

  2. Visser, M.: Lorentzian Wormholes: from Einstein to Hawking. American Institute of Physics, New York (1996)

  3. Visser, M., Kar, S., Dadhich, N.: Phys. Rev. Lett. 90, 201102 (2003). doi:10.1103/PhysRevLett.90.201102

    Article  MathSciNet  ADS  Google Scholar 

  4. Friedman, J.L., Schleich, K., Witt, D.M.: Phys. Rev. Lett. 71, 1486 (1993). doi:10.1103/PhysRevLett.71.1486

    Article  MathSciNet  ADS  Google Scholar 

  5. Hochberg, D., Visser, M.: Phys. Rev. Lett. 81, 746 (1998). doi:10.1103/PhysRevLett.81.746

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Kar, S., Dadhich, N., Visser, M.: Pra. J. Phys. 63(4, SI), 859 (2004). doi:10.1007/BF02705207. 5th International Conference on Gravitation and Cosmology (ICGC-2004), Cochin University of Science and Technology Kochi, JAPAN, JAN 05–10, 2004

  7. Roman, T.A.: Phys. Rev. D 47(4), 1370 (1993). doi:10.1103/PhysRevD.47.1370

    Article  MathSciNet  ADS  Google Scholar 

  8. Visser, M.: Nucl. Phys. B 328(1), 203 (1989). doi:10.1016/0550-3213(89)90100-4

    Article  MathSciNet  ADS  Google Scholar 

  9. Kim, S.W.: Phys. Lett. A 166(1), 13 (1992). doi:10.1016/0375-9601(92)90866-K

    Article  MathSciNet  ADS  Google Scholar 

  10. Delgaty, M.S.R., Mann, R.B.: Int. J. Mod. Phys. D 4(2), 231 (1995). doi:10.1142/S021827189500017X

    Article  MathSciNet  ADS  Google Scholar 

  11. Lemos, J.P.S., Lobo, F.S.N., de Oliveira, S.Q.: Phys. Rev. D 68(6), 103007 (2003). doi:10.1103/PhysRevD.68.064004

    Article  Google Scholar 

  12. Sushkov, S.: Phys. Rev. D 71(4), 043520 (2005). doi:10.1103/PhysRevD.71.043520

    Article  MathSciNet  ADS  Google Scholar 

  13. Lobo, F.S.N.: Phys. Rev. D 71(8), 084011 (2005). doi:10.1103/PhysRevD.71.084011

    Article  MathSciNet  ADS  Google Scholar 

  14. Lobo, F.S.N.: Phys. Rev. D 71, 124022 (2005). doi:10.1103/PhysRevD.71.124022

    Article  MathSciNet  ADS  Google Scholar 

  15. Rahaman, F., Kalam, M., Sarker, M., Gayen, K.: Phys. Lett. B 633(23), 161 (2006). doi:10.1016/j.physletb.2005.11.080. http://www.sciencedirect.com/science/article/pii/S037026930501748X

  16. Lobo, F.: Phys. Rev. D 71(12), 124022 (2005). doi:10.1103/PhysRevD.71.124022

    Article  MathSciNet  ADS  Google Scholar 

  17. Visser, M.: Phys. Rev. D 39(10), 3182 (1989). doi:10.1103/PhysRevD.39.3182

    Article  MathSciNet  ADS  Google Scholar 

  18. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973)

    Google Scholar 

  19. Blau, S.K., Guendelman, E.I., Guth, A.H.: Phys. Rev. D 35, 1747 (1987). doi:10.1103/PhysRevD.35.1747

    Article  MathSciNet  ADS  Google Scholar 

  20. Teo, E.: Phys. Rev. D 58(2), 024014 (1998). doi:10.1103/PhysRevD.58.024014

    Article  MathSciNet  ADS  Google Scholar 

  21. Kuhfittig, P.K.F.: Phys. Rev. D 67, 064015 (2003). doi:10.1103/PhysRevD.67.064015

    Article  MathSciNet  ADS  Google Scholar 

  22. Gonz{\’a}lez-Diaz, P.F.: Phys. Rev. D 54, 6122 (1996). doi:10.1103/PhysRevD.54.6122

    Article  MathSciNet  ADS  Google Scholar 

  23. Kuhfittig, P.K.F.: Phys. Rev. D 71, 104007 (2005). doi:10.1103/PhysRevD.71.104007

    Article  MathSciNet  ADS  Google Scholar 

  24. Bronnikov, K.A., Lemos, J.P.S.: Phys. Rev. D 79, 104019 (2009). doi:10.1103/PhysRevD.79.104019

    Article  ADS  Google Scholar 

  25. Gott, J., Alpert, M.: Gen. Relativ. Gravit. 16, 243 (1984). doi:10.1007/BF00762539

    Article  MathSciNet  ADS  Google Scholar 

  26. Headrick, M.P., Gott, J.R.: Phys. Rev. D 50, 7244 (1994). doi:10.1103/PhysRevD.50.7244

    Article  MathSciNet  ADS  Google Scholar 

  27. Perry, G., Mann, R.: Gen. Relativ. Gravit. 24, 305 (1992). doi:10.1007/BF00760232

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Kim, S.W., Lee, H.J., Kim, S.K., Yang, J.: Phys. Lett. A 183(56), 359 (1993). doi:10.1016/0375-9601(93)90588-Q. http://www.sciencedirect.com/science/article/pii/037596019390588Q

    Google Scholar 

  29. Kim, W.T., Oh, J.J., Yoon, M.S.: Phys. Rev. D 70, 044006 (2004). doi:10.1103/PhysRevD.70.044006

    Article  MathSciNet  ADS  Google Scholar 

  30. Rahaman, F., Kalam, M., Bhui, B.C., Chakraborty, S.: Phys. Scripta 76(1), 56 (2007). doi:10.1088/0031-8949/76/1/010

    Article  ADS  MATH  Google Scholar 

  31. Rubio, E.A.L.: Rev. Col. Fis. 40, 222 (2008)

    MathSciNet  Google Scholar 

  32. Jamil, M., Farooq, M.U.: Int. J. Theor. Phys. 49(4), 835 (2010). doi:10.1007/s10773-010-0263-z

    Article  MathSciNet  MATH  Google Scholar 

  33. Pressley, A.N.: Elementary Differential Geometry. Springer, New York (2008)

    Google Scholar 

  34. Wheeler, J.A.: Phys. Rev. 97, 511 (1955). doi:10.1103/PhysRev.97.511

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Visser, M.: Phys. Rev. D 43, 402 (1991). doi:10.1103/PhysRevD.43.402

    Article  MathSciNet  ADS  Google Scholar 

  36. Visser, M.: Mod. Phys. Lett. A 6(29), 2663 (1991). doi:10.1142/S0217732391003109

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Casimir, H.B.G.: Proc. Kon. Ned. Akad. Wetensch. B 51, 793 (1948)

  38. Lamoreaux, S.K.: Phys. Rev. Lett. 78, 5 (1997). doi:10.1103/PhysRevLett.78.5

    Article  ADS  Google Scholar 

  39. Mohideen, U., Roy, A.: Phys. Rev. Lett. 81, 4549 (1998). doi:10.1103/PhysRevLett.81.4549

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to express our sincere appreciation to Sampsa Vihonen from University of Jyväskylä (JYU), Sai Sunku Swaroop from Nanyang Technological University (NTU) and Hoai Nguyen Huynh (NTU) for their efforts in our discussions as well as their critical comments which have provided great assistance. Special thanks is directed to the reviewers whose comments have led to an enrichment of this paper. Finally, we would like to mention that Andrew Kricker and Fedor Duzhin from the Division of Mathematical Sciences, NTU have been helpful with some mathematical discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lock Yue Chew.

Appendix: some proofs

Appendix: some proofs

1.1 Proof of metric for surface of revolution generated around plane curves being free of spatial cross-term

Consider a unit-speed plane curve \({\varvec{\psi }}(v)=(f(v),g(v),0)\) where \(f^{\prime }(v)\) and \(g^{\prime }(v)\) (recall that prime denotes derivative with respect to \(v\)) are not simultaneously zero. A curve is unit-speed if its tangent vector has unit length, so that \(f^{\prime }(v)^2+g^{\prime }(v)^2=1\). It is a theorem in elementary differential geometry that any smooth (or regular) curve can be reparametrised to be unit-speed [33], so it is sufficient to just consider unit-speed curves.

According to the method described in Sect. 2, the two orthonormal vectors are \(\mathbf{{n}}(v)=(-g^{\prime }(v),f^{\prime }(v),0)\) and \(\mathbf{{b}}(v)=(0,0,1)\). Hence the surface of revolution around \({\varvec{\psi }}(v)\) is

$$\begin{aligned} {\varvec{\sigma }}(u,v)=(f(v)-g^{\prime }(v)Z(v)\cos {u},g(v) +f^{\prime }(v)Z(v)\cos {u},Z(v)\sin {u}). \end{aligned}$$
(54)

Then, the partial derivatives of \({\varvec{\sigma }}\) are

$$\begin{aligned} {\varvec{\sigma }}_u(u,v)&= \left( \begin{array}{c} g^{\prime }(v)Z(v)\sin {u}\\ -f^{\prime }(v)Z(v)\sin {u}\\ Z(v)\cos {u}\\ \end{array}\right),\end{aligned}$$
(55)
$$\begin{aligned} {\varvec{\sigma }}_v(u,v)&= \left( \begin{array}{c} f^{\prime }(v)-g^{\prime }(v)Z^{\prime }(v)\cos {u}-g^{\prime \prime }(v)Z(v)\cos {u}\\ g^{\prime }(v)+f^{\prime }(v)Z^{\prime }(v)\cos {u}+f^{\prime \prime }(v)Z(v)\cos {u}\\ Z^{\prime }(v)\sin {u}\\ \end{array}\right). \end{aligned}$$
(56)

With this,

$$\begin{aligned} g_{uv}&= {\varvec{\sigma }}_u\cdot {\varvec{\sigma }}_v\end{aligned}$$
(57)
$$\begin{aligned}&= -Z(v)Z^{\prime }(v)\sin {u}\cos {u}\left[f^{\prime }(v)^2 + g^{\prime }(v)^2-1\right]\nonumber \\&-Z(v)^2\sin {u}\cos {u}\left[f^{\prime }(v)f^{\prime \prime } (v)+g^{\prime }(v)g^{\prime \prime }(v)\right]. \end{aligned}$$
(58)

From the unit-speed condition, the first term in \(g_{uv}\) vanishes. Differentiating the unit-speed condition with respect to \(v\) gives \(f^{\prime }(v)f^{\prime \prime }(v)+g^{\prime }(v)g^{\prime \prime }(v)=0\), so that the second term also vanishes. This completes the proof.

In addition, note that \(g_{uu}=Z(v)^2\), and also that \(g_{vv}\) is in general a function of both spatial coordinates \(u\) and \(v\).

1.2 Proof of the 3-manifold of revolution around a straight line being spherically symmetric

A 3-manifold is said to be spherically symmetric if when expressed in spherical coordinates, its metric takes the form

$$\begin{aligned} ds^2=A(r)\ dr^2+r^2(d\theta ^2+\sin ^2{\theta }\ d\phi ^2), \end{aligned}$$
(59)

where \(A(r)\) is some function of the radial coordinate [18].

Consider the straight line \(\mathbf{l}(v)=(0,0,0,z(v))\) embedded in a 4-d Euclidean space. Following the technique described in Sect. 5 and taking the three orthonormal vectors mutually perpendicular to \(\mathbf{l}(v)\) to be the directions along the other three coordinate axes \(\mathbf{e}_1, \mathbf{e}_2\) and \(\mathbf{e}_3\), the 3-manifold of revolution around \(\mathbf{l}(v)\) is

$$\begin{aligned} {\varvec{\tau }}(w,u,v)=(Z(v)\cos {u},Z(v)\sin {u}\cos {w},Z(v) \sin {u}\sin {w},z(v)). \end{aligned}$$
(60)

Then, the partial derivatives of \({\varvec{\tau }}\) (prime in this section denotes derivative with respect to \(w\)) are

$$\begin{aligned} {\varvec{\tau }}_u&= \left( \begin{array}{c} -Z(v)\sin {u}\\ Z(v)\cos {u}\cos {w}\\ Z(v)\cos {u}\sin {w}\\ 0\\ \end{array} \right)\end{aligned}$$
(61)
$$\begin{aligned} {\varvec{\tau }}_v&= \left( \begin{array}{c} Z^{\prime }(v)\cos {u}\\ Z^{\prime }(v)\sin {u}\cos {w}\\ Z^{\prime }(v)\sin {u}\sin {w}\\ z^{\prime }(v)\\ \end{array} \right)\end{aligned}$$
(62)
$$\begin{aligned} {\varvec{\tau }}_w&= \left( \begin{array}{c} 0\\ -Z(v)\sin {u}\sin {w}\\ Z(v)\sin {u}\cos {w}\\ 0\\ \end{array}\right). \end{aligned}$$
(63)

The non-zero components of the metric tensor would be

$$\begin{aligned} g_{uu}=Z(v)^2, \quad g_{vv}=Z^{\prime }(v)^2+z^{\prime }(v)^2,\quad g_{ww}=Z(v)^2\sin ^2{u}, \end{aligned}$$
(64)

and so

$$\begin{aligned} ds^2=(Z^{\prime }(v)^2+z^{\prime }(v)^2)\ dv^2+Z(v)^2(du^2+\sin ^2{u}\ dw^2). \end{aligned}$$
(65)

A metric of this form can be considered to be spherically symmetric. Nevertheless, we shall make this explicit by expressing it in the form in Eq. (59). To do this, we will make the following reparametrisation \(v=Z^{-1}(r), u=\theta \) and \(w=\phi \). Under this reparametrisation, Eq. (60) becomes

$$\begin{aligned} {\varvec{\tau }}(r,\theta ,\phi )=(r\cos {\theta },r\sin {\theta }\cos {\phi }, r\sin {\theta }\sin {\phi },z(Z^{-1}(r))). \end{aligned}$$
(66)

The metric would then be

$$\begin{aligned} ds^2=\left(1+\left(\frac{d[z(Z^{-1}(r))]}{dr}\right)^2\right)\ dr^2+r^2(d\theta ^2+\sin ^2{\theta }\ d\phi ^2). \end{aligned}$$
(67)

The proof for an n-manifold of revolution around a straight line is similar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saw, VL., Chew, L.Y. A general method for constructing curved traversable wormholes in (2+1)-dimensional spacetime. Gen Relativ Gravit 44, 2989–3007 (2012). https://doi.org/10.1007/s10714-012-1435-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-012-1435-3

Keywords

Navigation