Skip to main content
Log in

A two-mass expanding exact space-time solution

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In order to understand how locally static configurations around gravitationally bound bodies can be embedded in an expanding universe, we investigate the solutions of general relativity describing a space–time whose spatial sections have the topology of a 3-sphere with two identical masses at the poles. We show that Israel junction conditions imply that two spherically symmetric static regions around the masses cannot be glued together. If one is interested in an exterior solution, this prevents the geometry around the masses to be of the Schwarzschild type and leads to the introduction of a cosmological constant. The study of the extension of the Kottler space–time shows that there exists a non-static solution consisting of two static regions surrounding the masses that match a Kantowski–Sachs expanding region on the cosmological horizon. The comparison with a Swiss-Cheese construction is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birkhoff G.D.: Relativity and Modern Physics, pp. 253. Harvard University Press, Cambridge (1923)

    MATH  Google Scholar 

  2. Hawking S.W., Ellis G.F.R.: The Large Scale Structure of Space Time. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  3. Lindquist R.W., Wheeler J.A.: Rev. Mod. Phys. 29, 432 (1957)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Gausmann E. et al.: Class. Quantum Gravity 18, 5155 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Lehoucq R. et al.: Class. Quantum Gravity 19, 4683 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Weeks J. et al.: Class. Quantum Gravity 20, 1529 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Uzan J.-P. et al.: Phys. Rev. D 69, 043003 (2004)

    Article  ADS  Google Scholar 

  8. Clifton T., Ferreira P.G.: Phys. Rev. D 80, 103503 (2009)

    Article  ADS  Google Scholar 

  9. Clifton T., Ferreira P.G.: JCAP 10, 26 (2009)

    ADS  Google Scholar 

  10. Einstein A., Straus E.G.: Rev. Mod. Phys. 17, 120 (1945)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Einstein A., Straus E.G.: Rev. Mod. Phys. 18, 148 (1945)

    Article  MathSciNet  ADS  Google Scholar 

  12. Kottler F.: Ann. Phys. 56, 401 (1918)

    Article  MATH  Google Scholar 

  13. Weyl H.: Phys. Z. 20, 31 (1919)

    Google Scholar 

  14. Israel W.: Nuovo Cimento B 44, 1 (1966)

    Article  ADS  Google Scholar 

  15. Israel W.: Nuovo Cimento B 48, 463 (1967)

    Article  ADS  Google Scholar 

  16. Schrödinger E.: Expanding Universes. Cambridge University Press, Cambridge (1956)

    MATH  Google Scholar 

  17. Jebsen J.T.: Gen. Relativ. Gravit. 37, 2253 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Deser S.: Gen. Relativ. Gravit. 37, 2251 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Goldwirth D., Katz J.: Class. Quantum Gravity 12, 769 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Perlick, V.: Living Rev. Relat. 7, 9 (2004) (section 5.2). http://relativity.livingreviews.org/Articles/lrr-2004-9/.

  21. Boyer R.H.: Proc. R. Soc. A 311, 245 (1969)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Misner, C., Thorne, K.S., Wheeler, J.A.: Gravitation (Freeman, 1973)

  23. Lake K.: Class. Quantum Gravity 23, 5883 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Israel W.: Phys. Rev. 143, 1016 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  25. Klösch T., Strobl T.: Class. Quantum Gravity 13, 1191 (1996)

    Article  MATH  ADS  Google Scholar 

  26. Lake K., Roeder R.C.: Phys. Rev. D 15, 3513 (1977)

    Article  ADS  Google Scholar 

  27. Stuchlik Z.: Bull. Astron. Inst. Czechosl. 34, 129 (1983)

    MATH  MathSciNet  ADS  Google Scholar 

  28. Katz J., Lynden-Bell D.: Class. Quantum Gravity 8, 2231 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  29. Marolf D.: Gen. Relativ. Gravit. 31, 919 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Gibin J.T., Marolf D., Garvey R.: Gen. Relativ. Gravit. 36, 83 (2004)

    Article  ADS  Google Scholar 

  31. Doran, R., Lobo, F., Crawford, P.: gr-qc/0609042

  32. Kantowski R., Sachs R.K.: J. Math. Phys. 7, 443 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  33. Kantowski R.: Astrophys. J. 155, 89 (1969)

    Article  ADS  Google Scholar 

  34. Balbinot R., Bergamini R., Comastri A.: Phys. Rev. D 38, 2415 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  35. Wiltshire D.L.: New J. Phys. 9, 377 (2007)

    Article  ADS  Google Scholar 

  36. Wiltshire, D.L.: In: Pecontal, E., et al. (eds.) Dark Energy and Dark Matter: Observations, Experiments and Theories. EAS Publ. Ser. 36, 91 (2009)

  37. Wiltshire D.L.: Int. J. Mod. Phys. D 18, 2121 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. Marra V. et al.: Phys. Rev.D 76, 123004 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Larena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uzan, JP., Ellis, G.F.R. & Larena, J. A two-mass expanding exact space-time solution. Gen Relativ Gravit 43, 191–205 (2011). https://doi.org/10.1007/s10714-010-1081-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-010-1081-6

Keywords

Navigation