Skip to main content
Log in

The gravitational bending of light by stars: a continuing story of curiosity, scepticism, surprise, and fascination

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Driven entirely by human curiosity, the effect of the gravitational bending of light has evolved on unforeseen paths, in an interplay between shifts in prevailing paradigms and advance of technology, into the most unusual way to study planet populations. The confirmation of the bending angle predicted by Einstein with the Solar Eclipse measurements from 1919 marked the breakthrough of the theory of General Relativity, but it was not before the detection of the double image of the quasar 0957+561 that ‘gravitational lensing’ really entered the observational era. The observation of a characteristic transient brightening of a star caused by the gravitational deflection of its light by an intervening foreground star, constituting a ‘microlensing event’, required even further advance in technology before it could first emerge in 1993. While it required more patience in waiting before ‘Einstein’s blip’ for the first time revealed the presence of a planet orbiting a star other than the Sun, such detections can now be monitored live, and gravitational microlensing is not only sensitive to masses as low as that of the Moon, but can even reveal planets around stars in galaxies other than the Milky Way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. [Marcus] Vitruvius [Pollio]: De architectura (about 25 BC)

  2. Kλαυδιoς Πτoλεμαιoς (Klaudios Ptolemaios): Mαθηματικη Συνταξις (about 150)

  3. Copernicus N.: De Revolutionibus Orbium Coelestium. Ioh. Petreius, Norimbergae (1543)

    Google Scholar 

  4. Kepler, J.: Astronomia nova αιτιoλoγητoς, seu physica coelestis, tradita commentariis de motibus stellae Martis, ex observationibus G.V. Tychonis Brahe. Pragae (1609)

  5. Kepler J.: Harmonices mundi. J. Plancus, Lincii Austriae (1619)

    Google Scholar 

  6. Newton I.S.: Philosophiae naturalis principia mathematica. J. Streater for the Royal Society, London (1687)

    Google Scholar 

  7. Soldner, J.: Ueber die Ablenkung eines Lichtstrals von seiner geradlinigen Bewegung, durch die Attraktion eines Weltkörpers, an welchem er nahe vorbei geht. Berliner Astron. Jahrb. für das Jahr 1804, pp. 161–172 (1801)

  8. Einstein, A.: Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen. Jahrbuch der Radioaktivität Und Elektronik 4, 411–462 (1907)

    ADS  Google Scholar 

  9. Einstein A.: Zur Elektrodynamik bewegter Körper. Annalen der Physik 322, 891–921 (1905)

    Article  ADS  Google Scholar 

  10. Einstein A.: Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes. Annalen der Physik 340, 898–908 (1911)

    Article  ADS  Google Scholar 

  11. Einstein A.: Zur allgemeinen Relativitätstheorie. Sitzungsber. preuss. Akad. Wiss. 47, 778–786 (1915)

    Google Scholar 

  12. Einstein A.: Die Feldgleichungen der Gravitation. Sitzungsber. preuss. Akad. Wiss. 47, 844–847 (1915)

    Google Scholar 

  13. The Times, 8 August 1964

  14. Einstein A.: Erklärung der Perihelionbewegung der Merkur aus der allgemeinen Relativitätstheorie. Sitzungsber. preuss. Akad. Wiss. 47, 831–839 (1915)

    Google Scholar 

  15. Eddington A.S.: The total eclipse of 1919 May 29 and the influence of gravitation on light. The Observatory 42, 119–122 (1919)

    ADS  Google Scholar 

  16. Dyson F.W., Eddington A.S., Davidson C.: A determination of the deflection of light by the Sun’s gravitational field, from observations made at the total eclipse of May 29, 1919. R. Soc. London Phil. Trans. Ser. A 220, 291–333 (1920)

    Article  ADS  Google Scholar 

  17. Eddington A.S., Jeans J.H., Sir Lodge O., Sir Larmor J., Silberstein L., Lindemann F.A., Jeffreys H.: Discussion on the theory of relativity. Mon. Not. R. Astron. Soc. 80, 96–118 (1919)

    ADS  Google Scholar 

  18. von Klüber H.: The determination of Einstein’s light-deflection in the gravitational field of the sun. Vistas Astron. 3, 47–77 (1960)

    Article  Google Scholar 

  19. Freundlich E., von Klüber H., von Brunn A.: Ergebnisse der Potsdamer Expedition zur Beobachtung der Sonnenfinsternis von 1929, Mai 9, in Takengon (Nordsumatra). 5. Mitteilung. Über die Ablenkung des Lichtes im Schwerefeld der Sonne. Zeitschrift für Astrophysik 3, 171–198 (1931)

    ADS  Google Scholar 

  20. Eisenstaedt, J.: The low water mark of general relativity, 1925–1955. In: Howard, D., Stachel, J. (eds.) Einstein and the History of General Relativity, pp. 277–292. Birkhäuser (1989)

  21. Hentschel K.: Erwin Finlay Freundlich and testing Einstein’s theory of relativity. Arch. History Exact Sci. 47, 143–201 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Muhleman D.O., Ekers R.D., Fomalont E.B.: Radio interferometric test of the general relativistic light bending near the Sun. Phys. Rev. Lett 24, 1377–1380 (1970)

    Article  ADS  Google Scholar 

  23. Renn J., Sauer T., Stachel J.: The origin of gravitational lensing: a postscript to Einstein’s 1936 Science paper. Science 275, 184–186 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  24. Einstein A.: Lens-like action of a star by the deviation of light in the gravitational field. Science 84, 506–507 (1936)

    Article  ADS  Google Scholar 

  25. Liebes S. Jr: Gravitational lens simulator. Am. J. Phys. 37, 103–104 (1969)

    Article  ADS  Google Scholar 

  26. Refsdal S., Surdej J.: Gravitational lenses. Rep. Progr. Phys. 57, 117–185 (1994)

    Article  ADS  Google Scholar 

  27. Lodge O.J.: Gravitation and light. Nature 104, 354 (1919)

    Article  MATH  ADS  Google Scholar 

  28. Einstein, A.: Letter to J. Cattell, dated 18 December 1936 (Einstein Archives call no. 65–603)

  29. Trimble, V.: The first lenses. In: Brainerd, T.G., Kochanek, C.S. (eds.) Gravitational Lensing: Recent Progress and Future Goals. Astronomical Society of the Pacific Conference Series, vol. 237, pp. 1–14 (2001)

  30. Zwicky F.: Nebulae as gravitational lenses. Phys. Rev. 51, 290 (1937)

    Article  ADS  Google Scholar 

  31. Refsdal S.: The gravitational lens effect. Mon. Not. R. Astron. Soc. 128, 295–306 (1964)

    MATH  ADS  MathSciNet  Google Scholar 

  32. Liebes S. Jr: Gravitational lenses. Phys. Rev. 133, B835–B844 (1964)

    Article  ADS  Google Scholar 

  33. Refsdal S.: On the possibility of determining Hubble’s parameter and the masses of galaxies from the gravitational lens effect. Mon. Not. R. Astron. Soc. 128, 307–310 (1964)

    MATH  ADS  MathSciNet  Google Scholar 

  34. Refsdal S.: On the possibility of testing cosmological theories from the gravitational lens effect. Mon. Not. R. Astron. Soc. 132, 101–111 (1966)

    ADS  Google Scholar 

  35. Refsdal S.: On the possibility of determining the distances and masses of stars from the gravitational lens effect. Mon. Not. R. Astron. Soc. 134, 315–319 (1966)

    ADS  Google Scholar 

  36. Walsh D., Carswell R.F., Weymann R.J.: 0957+561 A,B-twin quasistellar objects or gravitational lens. Nature 279, 381–384 (1979)

    Article  ADS  Google Scholar 

  37. Byalko A.V.: Focusing of radiation by a gravitational field. Sov. Astron. 13, 784–787 (1970)

    ADS  Google Scholar 

  38. Chang K., Refsdal S.: Flux variations of QSO 0957+561 A, B and image splitting by stars near the light path. Nature 282, 561–564 (1979)

    Article  ADS  Google Scholar 

  39. Rubin V.C., Ford W.K. Jr: Rotation of the Andromeda Nebula from a spectroscopic survey of emission regions. Astrophys. J. 159, 379–403 (1970)

    Article  ADS  Google Scholar 

  40. Rubin V.C., Ford W.K. Jr, Thonnard N.: Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R =  4 kpc) to UGC 2885 (R =  122 kpc). Astrophys. J. 238, 471–487 (1980)

    Article  ADS  Google Scholar 

  41. Zwicky F.: Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 6, 110–127 (1933)

    MATH  ADS  Google Scholar 

  42. Griest K.: Galactic microlensing as a method of detecting massive compact halo objects. Astrophys. J. 366, 412–421 (1991)

    Article  ADS  Google Scholar 

  43. Petrou, M.: Dynamical Models of Spheroidal Systems. Ph.D. thesis, Institute of Astronomy, University of Cambridge (1981)

  44. Paczyński B.: Gravitational microlensing by the galactic halo. Astrophys. J. 304, 1–5 (1986)

    Article  ADS  Google Scholar 

  45. Vidal-Madjar, A., et al.: Is our massive dark halo made of compact objects? In: Mamon, G.A., Gerbal, D. (eds.) Distribution of Matter in the Universe, pp. 388–394 (1992)

  46. Alcock, C., et al.: The MACHO Project—a search for the dark matter in the Milky-Way. In: Soifer, B.T. (ed.) Sky Surveys. Protostars to Protogalaxies, Astronomical Society of the Pacific Conference Series, vol. 43, pp. 291–296 (1993)

  47. Paczyński B.: Gravitational microlensing of the galactic bulge stars. Astrophys. J. 371, L63–L67 (1991)

    Article  ADS  Google Scholar 

  48. Kiraga M., Paczyński B.: Gravitational microlensing of the galactic bulge stars. Astrophys. J. 430, L101–L104 (1994)

    Article  ADS  Google Scholar 

  49. Udalski A., Szymański M., Kałuzny J., Kubiak M., Mateo M.: The optical gravitational lensing experiment. Acta Astron. 42, 253–284 (1992)

    ADS  Google Scholar 

  50. Alcock C. et al.: Possible gravitational microlensing of a star in the Large Magellanic Cloud. Nature 365, 621–623 (1993)

    Article  ADS  Google Scholar 

  51. Dominik M., Hirshfeld A.C.: The binary nature of an observed dark galactic object. Astron. Astrophys. 289, L31–L33 (1994)

    ADS  Google Scholar 

  52. Dominik M., Hirshfeld A.C.: Evidence for a binary lens in the MACHO LMC No. 1 microlensing event. Astron. Astrophys. 313, 841–850 (1996)

    ADS  Google Scholar 

  53. Alcock C. et al.: Binary microlensing events from the MACHO project. Astrophys. J. 541, 270–297 (2000)

    Article  ADS  Google Scholar 

  54. Mao S., Paczyński B.: Gravitational microlensing by double stars and planetary systems. Astrophys. J. 374, L37–L40 (1991)

    Article  ADS  Google Scholar 

  55. Gould A., Loeb A.: Discovering planetary systems through gravitational microlenses. Astrophys. J. 396, 104–114 (1992)

    Article  ADS  Google Scholar 

  56. Dominik M.: Stochastic distributions of lens and source properties for observed galactic microlensing events. Mon. Not. R. Astron. Soc. 367, 669–692 (2006)

    Article  ADS  Google Scholar 

  57. Dominik, M., et al.: Inferring statistics of planet populations by means of automated microlensing searches (2008). White paper submitted to ESA’s Exo-Planet Roadmap Advisory Team (EPR-AT), preprint arXiv.org:0808.0004

  58. Udalski A., Szymański M., Kałuzny J., Kubiak M., Mateo M., Krzemiński W., Paczyński B.: The optical gravitational lensing experiment. The Early Warning System: real time microlensing. Acta Astron. 44, 227–234 (1994)

    ADS  Google Scholar 

  59. Elachi, C., et al.: A Road Map for the Exploration of Neighboring Planetary Systems (ExNPS). Jet Propulsion Laboratory report, NASA (1996)

  60. Albrow M. et al.: The 1995 Pilot Campaign of PLANET: searching for microlensing anomalies through precise, rapid, round-the-clock monitoring. Astrophys. J. 509, 687–702 (1998)

    Article  ADS  Google Scholar 

  61. Dominik M. et al.: The PLANET microlensing follow-up network: results and prospects for the detection of extra-solar planets. Planet. Space Sci. 50, 299–307 (2002)

    Article  ADS  Google Scholar 

  62. Albrow M.D. et al.: Limits on the abundance of galactic planets from 5 years of PLANET observations. Astrophys. J. 556, L113–L116 (2001)

    Article  ADS  Google Scholar 

  63. Gaudi B.S. et al.: Microlensing constraints on the frequency of Jupiter-mass companions: analysis of 5 years of PLANET photometry. Astrophys. J. 566, 463–499 (2002)

    Article  ADS  Google Scholar 

  64. Griest K., Safizadeh N.: The use of high-magnification microlensing events in discovering extrasolar planets. Astrophys. J. 500, 37–50 (1998)

    Article  ADS  Google Scholar 

  65. Horne K., Snodgrass C., Tsapras Y.: A metric and optimization scheme for microlens planet searches. Mon. Not. R. Astron. Soc. 396, 2087–2102 (2009)

    Article  ADS  Google Scholar 

  66. Burgdorf M.J., Bramich D.M., Dominik M., Bode M.F., Horne K.D., Steele I.A., Rattenbury N., Tsapras Y.: Exoplanet detection via microlensing with RoboNet-1.0. Planet. Space Sci. 55, 582–588 (2007)

    Article  ADS  Google Scholar 

  67. Bond I.A. et al.: OGLE 2003-BLG-235/MOA 2003-BLG-53: a planetary microlensing event. Astrophys. J. 606, L155–L158 (2004)

    Article  ADS  Google Scholar 

  68. Beaulieu J.P. et al.: Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing. Nature 439, 437–440 (2006)

    Article  ADS  Google Scholar 

  69. Dominik M., Horne K., Bode M.F.: The first cool rocky/icy exoplanet. Astron. Geophys. 47(3), 3.25–3.30 (2006)

    Article  Google Scholar 

  70. ESO – European Organisation for Astronomical Research in the Southern Hemisphere, Annual Report, 2006

  71. Gaudi B.S. et al.: Discovery of a Jupiter/Saturn analog with gravitational microlensing. Sci 319, 927–930 (2008)

    Article  ADS  Google Scholar 

  72. Bennett, D.P., et al.: Masses and Orbital Constraints for the OGLE-2006-BLG-109Lb,c Jupiter/Saturn Analog Planetary System. Astrophys. J. (preprint, 2010). arXiv.org:0911.2706

  73. Dominik M. et al.: An anomaly detector with immediate feedback to hunt for planets of Earth mass and below by microlensing. Mon. Not. R. Astron. Soc. 380, 792–804 (2007)

    Article  ADS  Google Scholar 

  74. Paczyński B.: Gravitational microlensing in the local group. Ann. Rev. Astron. Astrophys. 34, 419–460 (1996)

    Article  ADS  Google Scholar 

  75. Han C.: Microlensing detections of Moons of exoplanets. Astrophys. J. 684, 684–690 (2008)

    Article  ADS  Google Scholar 

  76. Dominik M. et al.: ARTEMiS (Automated Robotic Terrestrial Exoplanet Microlensing Search): a possible expert-system based cooperative effort to hunt for planets of Earth mass and below. Astron. Nachr. 329, 248 (2008)

    Article  ADS  Google Scholar 

  77. Dominik, M., et al.: ARTEMiS (Automated Robotic Terrestrial Exoplanet Microlensing Search)—hunting for planets of Earth mass and below. In: Sun, Y.-S., Ferraz-Mello, S., Zhou, J.-L. (eds.) IAU Symposium, IAU Symposium, vol. 249, pp. 35–41 (2008)

  78. Dominik, M., et al.: ARTEMiS—microlensing planet hunt live. http://www.artemis-uk.org/catch-a-planet.html

  79. The Royal Society: The 2008 Royal Society Summer Science Exhibition—Is there anybody out there? Looking for new worlds. http://royalsociety.org/Is-there-anybody-out-there-Looking-for-new-worlds/

  80. Dominik, M.: Studying planet populations by gravitational microlensing. Gen. Relat. Gravit. (2010). doi:10.1007/s10714-010-0930-7

  81. Tsapras Y. et al.: RoboNet-II: follow-up observations of microlensing events with a robotic network of telescopes. Astronon. Nachr. 330, 4–11 (2009)

    Article  ADS  Google Scholar 

  82. Dominik, M., et al.: Realisation of a fully-deterministic microlensing observing strategy for inferring planet populations. Astron. Nachr. (submitted, 2010)

  83. Darnley M.J. et al.: The Ångstrom Project Alert System: real-time detection of extragalactic microlensing. Astrophys. J. 661, L45–L48 (2007)

    Article  ADS  Google Scholar 

  84. Covone G., de Ritis R., Dominik M., Marino A.A.: Detecting planets around stars in nearby galaxies. Astron. Astrophys. 357, 816–822 (2000)

    ADS  Google Scholar 

  85. Chung S.J., Kim D., Darnley M.J., Duke J.P., Gould A., Han C., Jeon Y.B., Kerins E., Newsam A., Park B.G.: The possibility of detecting planets in the Andromeda Galaxy. Astrophys. J. 650, 432–437 (2006)

    Article  ADS  Google Scholar 

  86. An J.H. et al.: The anomaly in the candidate microlensing event PA-99-N2. Astrophys. J. 601, 845–857 (2004). doi:10.1086/380820

    Article  ADS  Google Scholar 

  87. Ingrosso G., Novati S.C., de Paolis F., Jetzer P., Nucita A.A., Zakharov A.F.: Pixel lensing as a way to detect extrasolar planets in M31. Mon. Not. R. Astron. Soc. 399, 219–228 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Dominik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dominik, M. The gravitational bending of light by stars: a continuing story of curiosity, scepticism, surprise, and fascination. Gen Relativ Gravit 43, 989–1006 (2011). https://doi.org/10.1007/s10714-010-0964-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-010-0964-x

Keywords

Navigation