Skip to main content
Log in

Mars and frame-dragging: study for a dedicated mission

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this paper, we preliminarily explore the possibility of designing a dedicated satellite-based mission to measure the general relativistic gravitomagnetic Lense–Thirring effect in the gravitational field of Mars. The focus is on the systematic uncertainty induced by the multipolar expansion of the areopotential and on possible strategies to reduce it. It turns out that the major sources of bias are the Mars’equatorial radius R and the even zonal harmonics J ,  = 2, 4, 6, . . . of the areopotential. An optimal solution, in principle, consists of using two probes at high-altitudes (a ≈ 9,500–9,600 km) and different inclinations (one probe should fly in a nearly polar orbit), and suitably combining their nodes in order to entirely cancel out the bias due to δ R. The remaining uncancelled mismodelled terms due to δ J , ℓ = 2, 4, 6, . . . would induce a bias ≲ 1%, according to the present-day MGS95J gravity model, over a wide range of admissible values of the inclinations. The Lense–Thirring out-of-plane shifts of the two probes would amount to about 10 cm year−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lense J., Thirring H.: Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z. 19, 156–163 (1918)

    Google Scholar 

  2. Iorio L.: Comments, replies and notes: a note on the evidence of the gravitomagnetic field of Mars. Class. Quantum Gravit. 23, 5451–5454 (2006)

    Article  MATH  ADS  Google Scholar 

  3. Iorio L.: Is it possible to measure the Lense–Thirring effect in the gravitational fields of the Sun and of Mars?. In: Iorio, L. (eds) The Measurement of Gravitomagnetism: a Challenging Enterptise, pp. 177–187. NOVA, Hauppauge (2007)

    Google Scholar 

  4. Krogh K.: Comments, replies and notes: comment on Evidence of the gravitomagnetic field of Mars. Class. Quantum Gravit. 24, 5709–5715 (2007)

    Article  ADS  Google Scholar 

  5. Iorio, L.: Comment on evidence of the gravitomagnetic field of Mars, by Kris Krogh. J. Gravit. Phys. arXiv:gr-qc/0701146v4 (2008, in press)

  6. Everitt, C.W.F.: The gyroscope experiment I. General description and analysis of gyroscope performance. In: Bertotti, B. (ed.) Proc. Int. School Phys. Enrico Fermi Course LVI, pp. 331–360. New Academic Press, New York (1974)

  7. Everitt C.W.F. et al.: Gravity probe B: countdown to launch. In: Lämmerzahl, C., Everitt, C.W.F., Hehl, F.W. (eds) Gyros, Clocks, Interferometers. . .: testing Relativistic Gravity in Space, pp. 52–82. Springer, Berlin (2001)

    Chapter  Google Scholar 

  8. Schiff L.: Possible new experimental test of general relativity theory. Phys. Rev. Lett. 4, 215–217 (1960)

    Article  ADS  Google Scholar 

  9. Iorio, L.: An assessment of the measurement of the Lense Thirring effect in the Earth gravity field, in reply to: on the measurement of the Lense Thirring effect using the nodes of the LAGEOS satellites, in reply to On the reliability of the so far performed tests for measuring the Lense Thirring effect with the LAGEOS satellites by L. Iorio, by I. Ciufolini and E. Pavlis. Planet. Space Sci. 55, 503–511 (2007)

  10. Iorio, L.: Advances in the measurement of the Lense–Thirring effect with Satellite Laser Ranging in the gravitational field of the Earth. In: Koslovskiy, V.V. (ed.) Progress in Laser and Electro-Optics Research. NOVA, Hauppauge. arXiv:0808.0658v1 [gr-qc] (2008)

  11. Konolpiv A.S. et al.: A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus 182, 23–50 (2006)

    Article  ADS  Google Scholar 

  12. Kaula W.M.: Theory of Satellite Geodesy. Blaisdell, Waltham (1966)

    Google Scholar 

  13. Iorio L.: Appendix B the classical orbital precessions. In: Iorio, L. (eds) The Measurement of Gravitomagnetism: a Challenging Enterptise, pp. 239–245. NOVA, Hauppauge (2007)

    Google Scholar 

  14. Yoder, C.F.: Astrometric and geodetic properties of Earth and the solar system. In: Ahrens, T.J. (ed.) Global Earth physics a handbook of physical constants, Table 6. AGU reference shelf Series, vol. 1 (1995)

  15. Yuan D.N. et al.: Gravity field of Mars: a 75th degree and order model. J. Geophys. Res. 106, 23377–23402 (2001)

    Article  ADS  Google Scholar 

  16. Ciufolini I.: On a new method to measure the gravitomagnetic field using two orbiting satellites. N. Cim. A 109, 1709–1720 (1996)

    Article  ADS  Google Scholar 

  17. Lainey V., Dehant V., Pätzold M.: First numerical ephemerides of the Martian moons. Astron. Astrophys. 465, 1075–1084 (2007)

    Article  ADS  Google Scholar 

  18. Borderies N., Yoder C.F.: Phobos’ gravity field and its influence on its orbit and physical librations. Astron. Astrophys. 233, 235–251 (1990)

    ADS  Google Scholar 

  19. Jacobson, R.A., Rush, B.: Ephemerides of the Martian Satellites, MAR063, JPL IOM 343R-06-004 (2006)

  20. Van Patten R.A., Everitt C.W.F.: Possible experiment with two counter-orbiting drag-free satellites to obtain a new test of Einsteins’s general theory of relativity and improved measurements in geodesy. Phys. Rev. Lett. 36, 629–632 (1976)

    Article  ADS  Google Scholar 

  21. Ciufolini I.: Measurement of the Lense–Thirring drag on high-altitude, laser-ranged artificial satellites. Phys. Rev. Lett. 56, 278–281 (1986)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Iorio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iorio, L. Mars and frame-dragging: study for a dedicated mission. Gen Relativ Gravit 41, 1273–1284 (2009). https://doi.org/10.1007/s10714-008-0704-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-008-0704-7

Keywords

Navigation