Skip to main content
Log in

The general solution of Bianchi type V I I h vacuum cosmology

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The theory of symmetries of systems of coupled, ordinary differential equations (ODE) is used to develop a concise algorithm in order to obtain the entire space of solutions to vacuum Bianchi Einstein’s field equations (EFEs). The symmetries used are the well known automorphisms of the Lie algebra for the corresponding isometry group of each Bianchi Type, as well as the scaling and the time re-parametrization symmetry. The application of the method to Type V I I h results in (a) obtaining the general solution of Type V I I 0 with the aid of the third Painlevé transcendental P I I I ; (b) obtaining the general solution of Type V I I h with the aid of the sixth Painlevé transcendental P V I ; (c) the recovery of all known solutions (six in total) without a prior assumption of any extra symmetry; (d) The discovery of a new solution (the line element given in closed form) with a G 3 isometry group acting on T 3, i.e., on time-like hyper-surfaces, along with the emergence of the line element describing the flat vacuum Type V I I 0 Bianchi Cosmology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heckmann, O., Schücking, E.: In: Witten, L. (ed.): Gravitation, an introduction to current research. Wiley, New York (1962)

  2. Harvey A.: J. Math. Phys. 20, 251 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  3. Christodoulakis T., Papadopoulos G.O., Dimakis A.: J. Phys. A 36, 427 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Jantzen R.T.: Comm. Math. Phys. 64, 211 (1979)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Jantzen R.T.: JMP 23, 1137 (1982)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Uggla C., Jantzen R.T.: Rosquist Phys. Rev. D 51, 5522 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  7. Siklos S.T.C.: Phys. Lett. A76, 19–21 (1980)

    ADS  MathSciNet  Google Scholar 

  8. Samuel J., Ashtekar A.: Class. Quan. Grav. 8, 2191 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Christodoulakis T., Kofinas G., Korfiatis E., Papadopoulos G.O., Paschos A.: JMP 42, 3580 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Christodoulakis T., Terzis P.A.: J. Math. Phys. 47, 102502 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  11. Ellis G.F.R., MacCallum M.A.H.: Commun. Math. Phys. 12, 108 (1969)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations, 2nd edn. Cambridge Monographs on Mathematical Physics. CUP, Cambridge (2003)

  13. Christodoulakis T., Korfiatis E., Papadopoulos G.O.: CMP 226, 377 (2002)

    MATH  MathSciNet  Google Scholar 

  14. Stephani, H.: Differential equations: Their Solutions using Symmetries. In: MacCallum, M.A.H. (ed.) Cambridge University Press, Cambridge (1989)

  15. Peter, J.O.: Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics 107 (2000)

  16. Taub A.H.: Ann. Math. 53, 472 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  17. Kasner E.: Am. J. Math. 43, 217 (1921)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ellis G.F.R.: JMP 8, 1171 (1967)

    Article  ADS  Google Scholar 

  19. Stewart J.M., Ellis G.F.R.: JMP 9, 1072 (1968)

    Article  ADS  Google Scholar 

  20. Lorenz-Petzold D.: Acta Phys. Polon. B 15, 117 (1984)

    MathSciNet  Google Scholar 

  21. Barnes A.: J. Phys. A 11, 1303 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  22. Milne E.A.: Kinematic Relativity. Oxford University Press, Amen House (1948)

    MATH  Google Scholar 

  23. Doroshkevich A.G., Lukash V.N., Novikov I.D.: Sov. Phys. JETP 37, 739 (1973)

    ADS  Google Scholar 

  24. Siklos S.T.C.: J. Phys. A. Math. Gen. 14, 395–409 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  25. Christodoulakis T., Terzis P.A.: CQG 24, 875 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Cosgrove C.M., Scoufis G.: Stud. Appl. Math. 88, 25–87 (1993)

    MATH  MathSciNet  Google Scholar 

  27. Petrov, A.Z.: Gravitational field geometry as the geometry of automorphisms. In: Recent developments in general relativity. Pergamon Press-PWN Warsaw, Oxford (1962)

  28. Gromak V.A., Lukashevich N.A.: The Analytic Solutions of the Painleve Equations (in Russian). Universitetskoye Publishers, Minsk (1990)

    Google Scholar 

  29. http://www.newton.cab.ac.uk/webseminars/pg+ws/2006/pem/

  30. Lukash V.N.: Zh. Eks. Teor. iz 67, 1594 (1974)

    MathSciNet  Google Scholar 

  31. Mason, L., Woodhouse, N.M.J.: Integrability, self-duality and twistor theory. London Mathematical Society Monographs New Series, vol. 15. Oxford Science Publications, Oxford (1997)

  32. Conte R.: Phys. Lett. A 372, 2269 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petros A. Terzis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terzis, P.A., Christodoulakis, T. The general solution of Bianchi type V I I h vacuum cosmology. Gen Relativ Gravit 41, 469–495 (2009). https://doi.org/10.1007/s10714-008-0678-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-008-0678-5

Keywords

Navigation