Skip to main content
Log in

Modified Brans–Dicke theory of gravity from five-dimensional vacuum

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We investigate, in the context of five-dimensional (5D) Brans–Dicke theory of gravity, the idea that macroscopic matter configurations can be generated from pure vacuum in five dimensions, an approach first proposed by Wesson and collaborators in the framework of 5D general relativity. We show that the 5D Brans–Dicke vacuum equations when reduced to four dimensions (4D) lead to a modified version of Brans–Dicke theory in 4D. As an application of the formalism, we obtain two 5D extensions of 4D O’Hanlon and Tupper vacuum solution and show that they lead two different cosmological scenarios in 4D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nordström, G.: Phys. Z. 15, 504 (1914). (English translation in T. Appelquist, A. Chodos and P. Freund, Modern Kaluza–Klein Theories, Addison-Wesley, Menlo Park, 1987)

  2. Kaluza T. (1921). Sitz. Preuss. Akad. Wiss. 33: 966

    Google Scholar 

  3. Klein O. (1926). Z. Phys. 37: 895

    Article  ADS  Google Scholar 

  4. Pavsic M. (2002). The Landscape of Theoretical Physics: A Global View—from Point Particles to the Brane World and Beyond in the Search of a Unifying Principle of Physics. Springer, Heidelberg

    Google Scholar 

  5. Wesson P.S. (1999). Space-time-matter. World Scientific, Singapore

    MATH  Google Scholar 

  6. Overduin J.M. and Wesson P.S. (1997). Phys. Rep. 283: 302

    Article  ADS  MathSciNet  Google Scholar 

  7. Wesson P.S. (2006). Five-dimensional Physics. World Scientific, Singapore

    MATH  Google Scholar 

  8. Campbell, J.E.: A Course of Differential Geometry. Claredon, Oxford (1926); Magaard, L.: Zur einbettung riemannscher Raume in Einstein-Raume und konformeuclidische Raume, Ph.D. Thesis, Kiel (1963)

  9. Romero C., Tavakol R. and Zalaletdinov R. (1995). Gen. Rel. Grav. 28: 365

    Article  ADS  MathSciNet  Google Scholar 

  10. Lidsey, J., Romero, C., Tavakol, R.K.: Steve Rippl (Queen Mary, University of London). Class. Quant. Grav. 14, 865 (1997)

  11. Seahra S.S. and Wesson P.S. (2003). Class. Quant. Grav. 20: 1321

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Dahia F. and Romero C. (2002). J. Math. Phys. 43: 5804

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Dahia F. and Romero C. (2002). J. Math. Phys. 43: 3097

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Anderson E., Dahia F., Lidsey J.E. and Romero C. (2003). J. Math. Phys. 44: 5108

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Brans C. and Dicke R. (1961). Phys. Rev. 124: 925

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Dicke R. (1962). Phys. Rev. 125: 2163

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Qiang L., Yongge M., Muxin H. and Dan Y. (2005). Phys. Rev. 71: 61501

    ADS  Google Scholar 

  18. Mendes L.E. and Mazumdar A. (2001). Phys. Lett. B: 249: 249

    ADS  Google Scholar 

  19. Mikhailov A.S., Mikhailov Y.S., Smolyakov M.N. and Vokubuev I.P. (2007). Class. Quant. Grav. 24: 231

    Article  MATH  ADS  Google Scholar 

  20. Zhang C., Liu H., Xu L. and Wesson P.S. (2006). Mod. Phys. Lett. A 21: 571

    Article  ADS  MathSciNet  Google Scholar 

  21. Banerjee N. and Pavon D. (2001). Phys. Rev. 63: 43504

    ADS  Google Scholar 

  22. Sen S. and Sen A.A. (2001). Phys. Rev. 63: 124006

    ADS  Google Scholar 

  23. Aguilar J.E.M. and Bellini M. (2005). Phys. Lett. 619: 208

    MathSciNet  Google Scholar 

  24. Anabitarte M., Aguilar J.E.M. and Bellini M. (2006). Eur. Phys. J. 45: 249–256

    Article  ADS  Google Scholar 

  25. Wesson P.S. and Ponce de Leon J. (1992). J. Math. Phys. 33: 3883

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Carmo M.P. do (1991). Riemannian Geometry. Birkhauser, Boston

    Google Scholar 

  27. O’Hanlon J. and Tupper B. (1972). Nuovo Cimento 7B: 305

    ADS  MathSciNet  Google Scholar 

  28. Faraoni V. (2004). Cosmology in Scalar-tensor Gravity. Kluwer, Dordrecht, ISBN: 1-4020-1988-2

    MATH  Google Scholar 

  29. Freund P.G.O. (1982). Nucl. Phys. 209: 146

    Article  ADS  MathSciNet  Google Scholar 

  30. Spergel D. (2003). Astrophys. J. Suppl. Ser. 48: 175

    Article  ADS  Google Scholar 

  31. Barros A. and Romero C. (1993). Phys. Lett. A 173: 243

    Article  ADS  Google Scholar 

  32. Haesen S. and Verstraelen L. (2004). J. Math. Phys. 45: 1497

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Billyarde A. and Coley A. (1997). Mod. Phys. Lett. A 12: 2121

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Romero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguilar, J.E.M., Romero, C. & Barros, A. Modified Brans–Dicke theory of gravity from five-dimensional vacuum. Gen Relativ Gravit 40, 117–130 (2008). https://doi.org/10.1007/s10714-007-0517-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-007-0517-0

Keywords

Navigation