Skip to main content
Log in

A modified Chaplygin gas model with interaction

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

A modified Chaplygin gas (MCG) model of unifying dark energy and dark matter is considered in this paper, in which dark energy interacts with dark matter. Concretely, the evolution of such a unified dark sectors model is studied and the statefinder diagnostic to the MCG model is performed in our model. By analysis, it is shown that the effective equation of state (EoS) parameter of dark energy can cross the so-called phantom divide ω = −1, the behavior of MCG will be like ΛCDM in the future and therefore our Universe will not end up with Big Rip in the future. Furthermore, we plot the evolution trajectories of the MCG model in the statefinder parameter rs plane and illustrate the discrimination between this scenario and the generalized Chaplygin gas (GCG) model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perlmutter S.J. et al. (1999). Astroph. J. 517: 565

    Article  ADS  Google Scholar 

  2. Riess A.G. et al. (1998). Astron J. 116: 1009

    Article  ADS  Google Scholar 

  3. Carroll S.M. (2001). Living Rev. Rel. 4: 1

    Google Scholar 

  4. Peebles P.J.E., Ratra B. (2003). Rev. Modern Phys. 75: 559

    Article  ADS  MathSciNet  Google Scholar 

  5. Caldwell R.R., Dave R., Steinhardt P.J. (1998). Phys. Rev. Lett. 80: 1582

    Article  ADS  Google Scholar 

  6. Sahni V., Wang L. (2000). Phys. Rev. D 62: 103507

    Article  ADS  Google Scholar 

  7. Caldwell R.R. (2002). Phys. Lett. B 545: 23

    Article  ADS  Google Scholar 

  8. Carroll S.M., Hoffman M., Trodden M. (2003). Phys. Rev. D 68: 023509

    Article  ADS  Google Scholar 

  9. Alam, U., Sahni, V.: astro-ph/0209443 (2002)

  10. Bilic N., Tupper G.B., Viollier R.D. (2002). Phys. Lett. B 535: 17

    Article  MATH  ADS  Google Scholar 

  11. Bento M.C., Bertolami O., Sen A.A. (2002). Phys. Rev. D 66: 043507

    Article  ADS  Google Scholar 

  12. Kamenshchik A., Moschella U., Pasquier V. (2001). Phys. Lett. B 511: 26

    Google Scholar 

  13. Zhu Z. (2004). Astron Astrophys. 423: 421

    Article  MATH  ADS  Google Scholar 

  14. Benaoum, H.B.: hep-th/0205140

  15. Chimento L.P. (2004). Phys. Rev. D 69: 123517

    Article  ADS  MathSciNet  Google Scholar 

  16. Chimento, L.P., Lazkoz, R.: Phys. Lett. B 615 (2005)

  17. Debnath U., Banerjee A., Chakraborty S. (2004). Class. Quant. Grav. 21: 5609

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Bento M.C., Bertolami O., Sen A.A. (2004). Phys. Rev. D 70: 083519

    Article  ADS  Google Scholar 

  19. Zimdahl W., Fabris J.C. (2005). Class. Quant. Grav. 22: 4311

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Knop R.A. et al. (2003). Astrophys. J. 598: 102

    Article  ADS  Google Scholar 

  21. Riess A.G. et al. (2004). Astrophys. J. 607: 665

    Article  ADS  Google Scholar 

  22. Li, X.Z., Liu, D.J.: Chin. Phys. Lett. 22 (2005)

  23. Feng, B., Wang, X.L., Zhang, X.M.: Phys. Lett. B 607, (2005)

  24. Kamenshchik A., Moschella U., Pasquier V. (2001). Phys. Lett. B 511: 265

    Article  MATH  ADS  Google Scholar 

  25. Sahni, V., Saini, T.D., Starobinsky, A.A., Alam, U.: JETP Lett. 77, (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Bo Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y.B., Li, S., Fu, M.H. et al. A modified Chaplygin gas model with interaction. Gen Relativ Gravit 39, 653–662 (2007). https://doi.org/10.1007/s10714-007-0412-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-007-0412-8

Keywords

Navigation