Skip to main content
Log in

The hole argument for covariant theories

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The hole argument was developed by Einstein in 1913 while he was searching for a relativistic theory of gravitation. Einstein used the language of coordinate systems and coordinate invariance, rather than the language of manifolds and diffeomorphism invariance. He formulated the hole argument against covariant field equations and later found a way to avoid it using coordinate language. In this paper we shall use the invariant language of categories, manifolds and natural objects to give a coordinate-free description of the hole argument and a way of avoiding it. Finally we shall point out some important implications of further extensions of the hole argument to sets and relations for the problem of quantum gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kerner R., Barbosa A.L., Gal’tsov D.V. Topics in Born–Infeld Electrodynamics, hep-th/0108026 (2005)

  2. Earman J., Norton J. (1997) What prince spacetime substantivalism? the hole story. Br. J. Philos. Sci. 38, 515–525

    Article  MathSciNet  Google Scholar 

  3. Einstein, A.: Die formale Grundlage der allgemeinen Relativitätstheorie, pp. 1030–1085 Königlich Preussische Akademie der Wissenschaften (Berlin), Sitzungsberichte (1914)

  4. Einstein, A.: Reltivity, the Special and General Theory, 15th edn. Translation by Robert W. Lawson, University of Sheffield. Crown Publishers Inc., New York (1952)

  5. Hawking S.W., Ellis G. (1973) The Large Scale Structure of the Universe. Cambridge University Press, Cambridge

    Google Scholar 

  6. Hermann R. Gauge Fields and Cartan-Ehresmann Connections, Part A. Math Sci Press, Brookline (1975)

  7. Hodges W. (1993) Model Theory. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  8. Geroch R. (2004) Gauge, Diffeomorphisms, Initial-Value Formulation, etc. The Einstein equations and the large scale behavior of gravitational fields, pp. 441–477. Birkhuser, Basel

  9. Fisher, A.: The Theory of Superspace. In: Relativity: Proceedings of the Relativity Conference in the Midwest. Plenum Press, New York/London (1970)

  10. Stachel, J., Iftime, M.: Fibered Manifolds, Natural Bundles, Structured Sets, G-Sets and all that: The Hole Story from Space Time to Elementary Particles, gr-qc/0505138 (2005)

  11. Isenberg J., Marsden J.E. (1982) A slice theorem for the space of solutions of Einstein’s equations, Physics Report, vol 89, no 2. North-Holland Publishing Company, Amsterdam, pp. 179–222

  12. Klainerman S., Christodoulou D. (1993) The Global Nonlinear Stability of the Minkowski Space. Princeton University Press, New Jersey

    MATH  Google Scholar 

  13. Kolár I., Michor P., Slovák J. (1993) Natural Operations in Differential Geometry. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  14. Kamiński, W., Lewandowski, J., Bobieński, M.: Background independent quantizations: the scalar field I, gr-qc/0508091 (2005)

  15. Stephani H. et al. (2003) Exact Solution of Einstein’s Field Equations 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  16. MacLane S. (1992) Sheaves in Geometry and Logic: a first introduction to topos theory. Springer, Berlin Heidelberg New York

    Google Scholar 

  17. Palais, R.: Notes on the slice theorem for the space of Riemannian metrics. Letter circulated in 1969 and notes written at Santa Cruz in 1975 (1970)

  18. Sachs R.K., Wu H. (1977) General Relativity for Mathematicians. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  19. Sardanashvily G., Zakharov O. (1991) Gauge Gravitation Theory. World Scientific, Singapore

    Google Scholar 

  20. Sorkin R.D. (2000) Indications of causal set cosmology Int. J. Theor. Phys. 39, 1731–1736

    Article  MathSciNet  MATH  Google Scholar 

  21. Stachel J. (1969) Specifying sources in general relativity. Phys. Rev. 180, 1256–1261

    Article  ADS  MathSciNet  Google Scholar 

  22. Stachel J. (1986) What a Physicist Can Learn From the Discovery of General Relativity. In: Remo Ruffini (ed). Proceedings of the Fourth Marcel Grossmann Meeting on General Relativity. Elsevier, Amsterdam, pp. 1857–1862

    Google Scholar 

  23. Stachel, J.: Einstein’s Search for General Covariance, 1912–1915. In: Don Howard, John Stachel (eds.). Einstein and the History of General Relativity, Einstein Studies, vol. 1. Birkhäuser, Boston/Basel/Berlin (1989), pp. 63–100. Reprinted in Stachel, John, Einstein from B to Z, Boston/Basel/Berlin: Birkhäuser 2002, pp. 301–337

  24. Stachel J. (1993) The Meaning of General Covariance: the Hole Story. In: John Earman, et al. (eds). Philosophical Problems of the Internal and External Worlds. University of Pittsburgh Press Pittsburgh/Universitätsverlag, Konstanz, pp. 129–160

    Google Scholar 

  25. Stachel J. (1994) Changes in the Concepts of Space and Time Brought about by Relativity. In: Carol C. Gould, Robert S. Cohen (eds). Artifacts, Representations, and Social Practice/Essays for Marx Wartofsky. Kluwer, Dordrecht/Boston/London, pp. 141–162

    Google Scholar 

  26. Stachel J. New light on the Einstein–Hilbert priority question. J. Astrophys. Astron. 20, 91–101 (1999). Reprinted in Stachel, John, Einstein from B to Z. (see ref 23), pp. 353–364

    Google Scholar 

  27. Stachel, J.: The story of Newstein: or is gravity just another pretty force? In Renn, J., Schimmel, M. (eds.). The Genesis of General Relativity: Sources and Interpretations, vol. 4, Gravitation in the Twilight of Classical Physics: The Promise of Mathematics (Berlin, Springer 2006), pp. 1041–1078

  28. Stachel J. (2004) Structural Realism and Contextual Individuality. In: Yemima Ben-Menahem, (ed). Hilary Putnam. Cambridge University Press, Cambridge

  29. Stachel J. (2006) Structure, individuality and quantum gravity. In: Rickles D., French S., Saatsi J. (eds) The Structural Foundations of Quantum Gravity. Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Stachel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iftime, M., Stachel, J. The hole argument for covariant theories. Gen Relativ Gravit 38, 1241–1252 (2006). https://doi.org/10.1007/s10714-006-0303-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-006-0303-4

Keywords

Navigation