Skip to main content

Advertisement

Log in

A New Instrumental Array in Sichuan, China, to Monitor Vibrations and Perturbations of the Lithosphere, Atmosphere, and Ionosphere

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Scientists investigating the coupling between the lithosphere, atmosphere, and ionosphere (LAI) require multiple instruments installed on and near the Earth’s surface and aboard satellites orbiting the Earth. However, challenges always occur owing to a lack of observation data from other monitoring instruments and/or the distance between distinct instruments. A novel system for monitoring vibrations and perturbations in the LAI (MVP–LAI) was established in the countryside of Leshan City, Sichuan Province, China, in June 2021. Twelve different types of instruments with 18 devices were set within an area of 50 m × 50 m. The other two were installed approximately 20 km away to avoid interference. These instruments routinely monitor the changes in at least 14 geophysical parameters with short sampling intervals, available for capturing waves propagating from the subsurface to the ionosphere. Once the observations retrieved from the China Seismo-Electromagnetic Satellite and the radio occultation are integrated, the monitoring of vibrations and perturbations can reach ~ 800 km above the Earth’s surface. The system is mainly operated by the China University of Geoscience (Wuhan), China and will officially start functioning in September 2021. All the efforts benefit the investigation of the causal mechanisms of LAI coupling and expose the potential sources of vibrations and perturbations, incorporating observations from other spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

Daily data have been shown in the website: http://geostation.top. Data are available for directly contacting the first author, Chieh-Hung Chen, through the E-mail: nononochchen@gmail.com.

References

  • Astafyeva E (2019) Ionospheric detection of natural hazards. Rev Geophys 57:1265–1288. https://doi.org/10.1029/2019RG000668

    Article  Google Scholar 

  • Bishop RL, Straus PR (2006) Characterizing ionospheric variations in the vicinity of hurricanes and typhoons using GPS occultation measurements, AGU Fall Meeting, San Francisco, 11–15 December, Eos (Trans Am Geophys Union), 87(Suppl.):SA33B‐0276

  • Cander LR (2019) Ionospheric storm morphology. In: Ionospheric space weather. Springer Geophysics, Springer, Cham. Doi:https://doi.org/10.1007/978-3-319-99331-7_5

  • Chakrabarti SK (eds) (2010) Propagation effects of very low frequency radio waves, conference proceedings 1286, American Institute of Physics

  • Chang LC, Lin CH, Yue J, Liu JY, Lin JT (2013) Stationary planetary wave and nonmigrating tidal signatures in ionospheric wave 3 and wave 4 variations in 2007–2011 FORMOSAT3/COSMIC observations. J Geophys Res Space Phys 118:6651–6665. https://doi.org/10.1002/jgra.50583

    Article  Google Scholar 

  • Chang LC, Sun YY, Yue J, Wang JC, Chien SH (2016) Coherent seasonal, annual, and quasi-biennial variations in ionospheric tidal/SPW amplitudes. J Geophys Res Space Phys 121:6970–6985. https://doi.org/10.1002/2015JA022249

    Article  Google Scholar 

  • Chen CH, Hsu HL, Wen S, Yeh TK, Chang FY, Wang CH, Liu JY, Sun YY, Hattori K, Yen HY (2013) Evaluation of seismo-electric anomalies using magnetic data in Taiwan. Nat Haz Earth Sys 13:597–604

    Article  Google Scholar 

  • Chen CH, Lin CH, Hsu HL, Wang CH, Lee LC, Han P, Wen S, Chen CS (2015) Evaluating the March 27, 2013 M 6.2 earthquake hypocenter using momentary high-conductivity materials. Terr Atmos Ocean Sci 26:1–9

    Article  Google Scholar 

  • Chen CH, Lin CH, Yen HY, Chen CR, Jan JC, Wang CH, Liu JY (2017) Artificial magnetic disturbance from the mass rapid transit system in Taiwan. Terra Nova 29:306–311. https://doi.org/10.1111/ter.12277

    Article  Google Scholar 

  • Chen CH, Lin LC, Yeh TK, Wen S, Yu H, Chen Y, Gao Y, Han P, Sun YY, Liu JY, Lin CH, Tang CC, Lin CM, Hsieh HH, Lu PJ (2020) Determination of epicenters before earthquakes utilizing far seismic and GNSS data: Insights from ground vibrations. Remote Sens 12:3252. https://doi.org/10.3390/rs12193252

    Article  Google Scholar 

  • Chen CH, Sun YY, Lin LC, Han P, Yu H, Zhang X, Tang CC, Chen CR, Yen HY, Lin CH, Liu JY, Lin CR (2021a) Large air pressure changes triggered by P-SV ground motion in a cave in northern Taiwan. Sci Rep 11:12850. https://doi.org/10.1038/s41598-021-92216-w

    Article  Google Scholar 

  • Chen CH, Lin JY, Gao Y, Lin CH, Han P, Chen CR, Lin LC, Huang R, Liu JY (2021b) Magnetic pulsations triggered by microseismic ground motion. J Geophys Res 126:e2020JB021416. https://doi.org/10.1029/2020JB021416

    Article  Google Scholar 

  • Cho M, Rycroft MJ (1998) Computer simulation of the electric field structure and optical emission from cloud-top to the ionospheres. J Atmos Solar-Terr Phys 60:871–888

    Article  Google Scholar 

  • Chou MY, Lin CCH, Yue J, Tsai HF, Sun YY, Liu JY, Chen CH (2017a) Concentric traveling ionosphere disturbances triggered by Super Typhoon Meranti (2016). Geophys Res Lett 44:1219–1226. https://doi.org/10.1002/2016GL072205

    Article  Google Scholar 

  • Chou MY, Lin CCH, Yue J, Chang LC, Tsai HF, Chen CH (2017b) Medium-scale traveling ionospheric disturbances triggered by Super Typhoon Nepartak (2016). Geophys Res Lett 44:7569–7577. https://doi.org/10.1002/2017GL073961

    Article  Google Scholar 

  • Chou MY, Cherniak I, Lin CCH, Pedatella NM (2020) The persistent ionospheric responses over Japan after the impact of the 2011 Tohoku earthquake. Space Weather 18:e2019SW002302. https://doi.org/10.1029/2019SW002302

    Article  Google Scholar 

  • Chum J, Liu YJ, Laštovička J, Fišer J, Mošna Z, Baše J, Sun YY (2016) Ionospheric signatures of the April 25, 2015 Nepal earthquake and the relative role of compression and advection for Doppler sounding of infrasound in the ionosphere. Earth Planets Space 68:24. https://doi.org/10.1186/s40623-016-0401-9

    Article  Google Scholar 

  • Davies K (1990) Ionospheric Radio. Peregrinus, London

    Book  Google Scholar 

  • De la Torre A, Alexander P, Giraldez A (1999) The kinetic to potential energy ratio and spectral separability from high-resolution balloon soundings near the Andes Mountains. Geophys Res Lett 26:1413–1416

    Article  Google Scholar 

  • Fraser-Smith AC, Bernardi A, McGill PR, Ladd ME, Helliwell RA, Villard OG (1990) Low-frequency magnetic field measurements near the epicenter of the MS7.1 Loma Prieta earthquake. Geophys Res Lett 17(9):1465–1468. https://doi.org/10.1029/GL017i009p01465

    Article  Google Scholar 

  • Fraser-Smith AC, Kjono SN (2014) The ULF magnetic fields generated by thunderstorms: a source of ULF geomagnetic pulsations? Radio Sci 49(11–12):1162–1170

    Article  Google Scholar 

  • Gao Y, Harris JM, Wen J, Huang Y, Twardzik C, Chen X, Hu H (2016) Modeling of the coseismic electromagnetic fields observed during the 2004 Mw 6.0 Parkfield earthquake. Geophys Res Lett 43:620–627. https://doi.org/10.1002/2015GL067183

    Article  Google Scholar 

  • Gao Y, Zhao G, Chong J, Klemperer SL, Han B, Jiang F, Wen J, Chen X, Zhan Y, Tang J, Xiao Q, Wang L (2020) Coseismic electric and magnetic signals observed during 2017 Jiuzhaigou Mw 6.5 earthquake and explained by electrokinetics and magnetometer rotation. Geophys J Int 223(2):1130–1143

    Article  Google Scholar 

  • Gokhberg MB, Gufeld IL, Rozhnoi AA, Marenko VF, Yampolsky VS, Ponomarev EA (1989) Study of seismic influence on the ionosphere by super long wave probing of the Earth-ionosphere waveguide. Phys Earth Planet Inter 57:64–67

    Article  Google Scholar 

  • Gufeld IL, Rozhnoi AA, Tyumensev SN, Sherstuk SV, Yampolsky VS (1992) Radiowave disturbances in period to Rudber and Rachinsk earthquakes. Phys Solid Earth 28(3):267–270

    Google Scholar 

  • Harrison RG, Aplin KL, Rycroft MJ (2010) Atmospheric electricity coupling between earthquake regions and the ionosphere. J Atmos Sol-Terr Phys 72:376–381

    Article  Google Scholar 

  • Harrison RG, Aplin KL, Rycroft MJ (2014) Brief communication: earthquake–cloud coupling through the global atmospheric electric circuit. Nat Hazards Earth Syst Sci 14:773–777. https://doi.org/10.5194/nhess-14-773-2014

    Article  Google Scholar 

  • Hayakawa M (2007) VLF/LF radio sounding of ionospheric perturbations associated with earthquakes. Sensors 7:1141–1158

    Article  Google Scholar 

  • Hayakawa M (2011) Probing the lower ionospheric perturbations associated with earthquakes by means of subionospheric VLF/LF propagation. Earthquake Sci 24(6):609–637

    Article  Google Scholar 

  • Hayakawa M (2015) Earthquake Prediction with Radio Techniques. John Wiley & Sons, Singapore Pte Ltd, Singapore

  • Hayakawa M (2016) Earthquake prediction with electromagnetic phenomena. Aip Conference Proceedings

  • Hayakawa M, Hobara Y (2010) Current status of seismo-electromagnetics for short-term earthquake prediction. Geomatics Nat Hazards Risk 1(2):115–155

    Article  Google Scholar 

  • Hayakawa M, Kawate R, Molchanov OA, Yumoro K (1996a) Results of ultra-low-frequency magnetic field measurements during the Guam earthquake of 8 August 1993. Geophys Res Left 23:241–244

    Article  Google Scholar 

  • Hayakawa M, Molchanov OA, Ondoh T, Kawai E (1996b) The precursory signature effect of the Kobe earthquake on VLF subionospheric signals. J Comm Res Lab Tokyo 43:169–180

    Google Scholar 

  • Hayakawa M, Nakamura T, Hobara Y, Williams E (2004) Observation of sprites over the Sea of Japan and conditions for lightning-induced sprites in winter. J Geophys Res Space Phys 109:A01312. https://doi.org/10.1029/2003JA009905

    Article  Google Scholar 

  • Hickey MP, Schubert G, Walterscheid RL (2001) Acoustic wave heating of the thermosphere. J Geophys Res Space Phys 106(A10):21543–21548. https://doi.org/10.1029/2001ja000036

    Article  Google Scholar 

  • Hines CO (1960) Internal atmospheric gravity waves at ionospheric heights. Can J Phys 38(11):1441–1481

    Article  Google Scholar 

  • Huang YN, Cheng K, Chen SW (1985) On the detection of acoustic-gravity waves generated by typhoon by use of real time HF Doppler frequency shift sounding system. Radio Sci 20:897–906. https://doi.org/10.1029/RS020i004p00897

    Article  Google Scholar 

  • Inan US, Bell TF, Rodriguez JV (1991) Heating and ionization of the lower ionosphere by lightning. Geophys Res Lett 18:705–708

    Article  Google Scholar 

  • Immel TJ, Sagawa E, England SL, Henderson SB, Hagan ME, Mende SB, Frey HU, Swenson CM, Paxton LJ (2006) Control of equatorial ionospheric morphology by atmospheric tides. Geophys Res Lett 33:L15108. https://doi.org/10.1029/2006GL026161

    Article  Google Scholar 

  • Kakinami Y, Kamogawa M, Tanioka Y, Watanabe S, Gusman AR, Liu JY, Watanabe Y, Mogi T (2012) Tsunamigenic ionospheric hole. Geophys Res Lett 39:L00G27. https://doi.org/10.1029/2011GL050159

    Article  Google Scholar 

  • Kasahara Y, Nakamura T, Hobara Y, Hayakawa M, Rozhnoi A, Solovieva M, Molchanov OA (2010) A statistical study on the AGW modulation in subionospheric VLF/LF propagation data and consideration of the generation mechanism of seismo-ionospheric perturbations. J Atmos Electr 30(2):103–112

    Google Scholar 

  • Kelley MC, Swartz WE, Heki K (2017) Apparent ionospheric total electron content variations prior to major earthquakes due to electric fields created by tectonic stresses. J Geophys Res Space Phys 122:6689–6695. https://doi.org/10.1002/2016JA023601

    Article  Google Scholar 

  • Korepanov V, Hayakawa M, Yampolski Y, Lizunov G (2009) AGW as a seismo-ionospheric coupling responsible agent. Phys Chem Earth Parts a/b/c 34(6–7):485–495

    Article  Google Scholar 

  • Koucká Knížová P, Laštovička J, Kouba D, Mošna Z, Podolská K, Potužníková K, Šindelářová T, Chum J, Rusz J (2021) Ionosphere influenced from lower-Lying atmospheric regions. Front Astron Space Sci 8:651445. https://doi.org/10.3389/fspas.2021.651445

    Article  Google Scholar 

  • Laštovička J, Šindelářová T (2019) Large-scale and transient disturbances and trends: from the ground to the ionosphere. In: Le-Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, Cham. https://doi.org/10.1007/978-3-319-75140-5_25

    Chapter  Google Scholar 

  • Lin CH, Liu JY, Fang TW, Chang PY, Tasi HF, Chen CH, Hsiao CC (2007) Motions of the equatorial ionization anomaly crests imaged by FORMOSAT-3/ COSMIC. Geophys Res Lett 34:L19101. https://doi.org/10.1029/2007GL030741

    Article  Google Scholar 

  • Liu JY, Tsai YB, Chen SW, Lee CP, Chen YC, Yen HY, Chang WY, Liu C (2006a) Giant ionospheric disturbances excited by the M9.3 Sumatra earthquake of 26 December 2004. Geophys Res Lett 33:L02103. https://doi.org/10.1029/2005GL023963

    Article  Google Scholar 

  • Liu JY, Tsai Y, Chen C, Chen Y, Yen H (2016a) Integrated search for Taiwan earthquake precursors (ISTEP). IEEJ Trans Fund Mater 136(5):214–220. https://doi.org/10.1541/ieejfms.136.214

    Article  Google Scholar 

  • Liu JY, Chang LCW, Chao CK, Chen MQ, Chu YH, Hau LN, Huang CM, Kuo CL, Lee LC, Lyu LH, Lin CH, Pan CJ, Shue JH, Su CL, Tsai LC, Yang YH, Lin CH, Hsu RR, Su HT (2016b) The fast development of solar terrestrial sciences in Taiwan. Geosci Lett 3:1–12. https://doi.org/10.1186/s40562-016-0049-0

    Article  Google Scholar 

  • Liu JY, Chen CH, Sun YY, Chen CH, Tsai HF, Yen HY, Chum J, Lastovicka J, Yang QS, Chen WS, Wen S (2016c) The vertical propagation of disturbances triggered by seismic waves of the 11 March 2011 M9.0 Tohoku Earthquake over Taiwan. Geophys Res Lett 43:1759–1765. https://doi.org/10.1002/2015GL067487

    Article  Google Scholar 

  • Liu JY, Sun YY, Kakinami Y, Chen CH, Lin CH, Tsai HF (2011a) Bow and stern waves triggered by the Moon’s shadow boat. Geophys Res Lett 38:L17109. https://doi.org/10.1029/2011GL048805

    Article  Google Scholar 

  • Liu JY, Chen CH, Lin CH, Tsai HF, Chen CH, Kamogawa M (2011b) Ionospheric disturbances triggered by the 11 March 2011 M9.0 Tohoku earthquake. J Geophys Res 116:A06319. https://doi.org/10.1029/2011JA016761

    Article  Google Scholar 

  • Liu LB, Wan WX (2020) Recent ionospheric investigations in China (2018–2019). Earth Planet Phys 4(3):179–205. https://doi.org/10.26464/epp2020028

    Article  Google Scholar 

  • Liu YM, Wang JS, Suo YC (2006b) Effects of typhoon on the ionosphere. Adv Geosci 29:351–360

    Google Scholar 

  • Lucas G, Love JJ, Kelbert A, Bedrosian PA, Rigler EJ (2020) A 100-year geoelectric hazard analysis for the US high-voltage power grid. Space Weather 18:e2019SW002329. https://doi.org/10.1029/2019SW002329

    Article  Google Scholar 

  • Mao ZQ, Chen CH, Zhang SQ, Yisimayili A, Yu HZ, Yu C, Liu JY (2020) Locating seismo-conductivity anomaly before the 2017 MW 65 Jiuzhaigou earthquake in china using far magnetic stations. Remote Sens 12:1777. https://doi.org/10.3390/rs12111777

    Article  Google Scholar 

  • Materassi M, Forte B, Coster AJ, Skone S (eds) (2020) The dynamical ionosphere. Elsevier, Amsterdam

    Google Scholar 

  • Miyaki K, Hayakawa M, Molchanov OA (2002) The role of gravity waves in the lithosphere-ionosphere coupling, as revealed from the subionospheric LF propagation data. In: Hayakawa M, Molchanov OA (eds) Seismo-Electromagnetics (Lithosphere–Atmosphere–Ionosphere Coupling). Terra Scientific Publishing, Tokyo, pp 229–232

    Google Scholar 

  • Molchanov OA, Hayakawa M (1998) Subionospheric VLF signal perturbations possibly related to earthquakes. J Geophys Res 103:17489–17504

    Article  Google Scholar 

  • Molchanov OA, Hayakawa M, Miyaki K (2001) VLF/LF sounding of the lower ionosphere to study the role of atmospheric oscillations in the lithosphere-ionosphere coupling. Adv Polar Upper Atmos Res Tokyo 15:146–158

    Google Scholar 

  • Molchanov OA, Mazhaeva OA, Goliavin AN, Hayakawa M (1993) Observations by the intercosmos-24 satellite of ELF-VLF electromagnetic emissions associated with earthquakes. Ann Geophys 11:431–440

    Google Scholar 

  • Molchanov OA, Hayakawa M (1995) Generation of ULF electromagnetic emissions by microfracturing. Geophys Res Lett 22:3091–3094

    Article  Google Scholar 

  • Molchanov OA, Hayakawa M, Rafalsky VA (1995) Penetration characteristics of electromagnetic emissions from an underground seismic source into the atmosphere, ionosphere and magnetosphere. J Geophys Res 100:1691–1712

    Article  Google Scholar 

  • Nishioka N, Tsugawa T, Kubota M, Ishii M (2013) Concentric waves and short-period oscillations observed in the ionosphere after the 2013 Moore EF5 tornado. Geophys Res Lett 40:5581–5586

    Article  Google Scholar 

  • Oyama KI, Kakinami Y, Liu JY, Kamogawa M, Kodama T (2008) Reduction of electron temperature in low-latitude ionosphere at 600 km before and after large earthquakes. J Geophys Res 113:A11317. https://doi.org/10.1029/2008JA013367

    Article  Google Scholar 

  • Oyama KI, Devi M, Ryu K, Chen CH, Liu JY, Liu H, Bankov L, Kodama T (2016) Modifications of the ionosphere prior to large earthquakes: report from the ionospheric precursor study group. Geosci Let 3(1):6. https://doi.org/10.1186/s40562-016-0038-3

    Article  Google Scholar 

  • Parkinson WD (1962) The influence of continents and oceans on geomagnetic variations. Geophys J R Astron Soc 6:441–449. https://doi.org/10.1111/j.1365-246X.1962.tb02992.x

    Article  Google Scholar 

  • Parkinson WD, Jones FW (1979) The geomagnetic coast effect. Rev Geophys 17:1999–2015

    Article  Google Scholar 

  • Pasko VP, Inan US, Bell TF, Taranenko YN (1997) Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere. J Geophys Res Space Phys 102(A3):4529–4561. https://doi.org/10.1029/96JA03528

    Article  Google Scholar 

  • Polyakova AS, Perevalova NP (2011) Investigation into impact of tropical cyclones on the ionosphere using GPS sounding and NCEP/NCAR Reanalysis data. Adv Space Res 48:1196–1210

    Article  Google Scholar 

  • Pulinets SA (2009) Physical mechanism of the vertical electric field generation over active tectonic faults. Adv Space Res 44(6):767–773

    Article  Google Scholar 

  • Pulinets SA, Boyarchuk K (2004) Ionospheric precursors of earthquakes. Springer, Berlin

    Google Scholar 

  • Pulinets SA, Ouzounov D (2011) Lithosphere– atmosphere–ionosphere coupling (LAIC) model—a unified concept for earthquake precursors validation. J Asian Earth Sci 41:371–382

    Article  Google Scholar 

  • Rajesh PK, Lin CH, Lin CY, Chen CH, Liu JY, Matsuo T, Chen SP, Yeh WH, Huang CY (2021) Extreme positive ionosphere storm triggered by a minor magnetic storm in deep solar minimum revealed by formosat-7/cosmic-2 and GNSS observations. J Geophys Res Space Phys 126:e2020JA028261. https://doi.org/10.1029/2020JA028261

    Article  Google Scholar 

  • Rishbeth H (2006) F-region links with the lower atmosphere? J Atmos Solar-Terr Phys 68:469–478

    Article  Google Scholar 

  • Rodger CJ (1999) Red sprites, upward lighting and VLF perturbations. Rev Geophys 37:317–336

    Article  Google Scholar 

  • Rozhnoi A, Solovieva M, Hayakawa M (2013) VLF/LF signals method for searching of electromagnetic earthquake precursors. In: Hayakawa M (ed) Earthquake prediction studies: seismo electromagnetics. Terra Scientific Publishing, Tokyo, pp 31–48

    Google Scholar 

  • Ryu K, Parrot M, Kim SG, Jeong KS, Chae JS, Pulinets S, Oyama KI (2015) Suspected seismo-ionospheric coupling observed by satellite measurements and GPS TEC related to the M7.9 Wenchuan earthquake of 12 May 2008. J Geophys Res Space Phys 119:10305–10323. https://doi.org/10.1002/2014JA020613

    Article  Google Scholar 

  • Shen X, Zhang H, Yuan X, Wang SG, Cao LW, Huang JB, Zhu JP, Piergiorgio XH, Dai JP (2018a) The state-of-the-art of the China seismo-electromagnetic satellite mission. Sci China Technol Sci 61:634–642

    Article  Google Scholar 

  • Shen XH, Zong QG, Zhang X (2018b) Introduction to special section on the China seismo-electromagnetic satellite and initial results. Earth Planet Phys 2:439–443

    Article  Google Scholar 

  • Shvets AV, Hayakawa M, Molchanov OA, Ando Y (2004) A study of ionospheric response to regional seismic activity by VLF radio sounding. Phys Chem Earth 29:627–637

    Article  Google Scholar 

  • Sorokin V, Chemyrev V, Hayakawa M (2015) Electrodynamic coupling of lithosphere‐atmosphere‐ionosphere of the earth. Nova Science Publishing

  • Sorokin VM, Yaschenko AK, Chmyrev VM, Hayakawa M (2006) DC electric field amplification in the mid-latitude ionosphere over seismically active faults. Phys Chem Earth 31:447–453

    Article  Google Scholar 

  • Su X, Meng G, Sun H, Wu W (2018) Positioning performance of BDS observation of the crustal movement observation network of China and its potential application on crustal deformation. Sensors 18:3353. https://doi.org/10.3390/s18103353

    Article  Google Scholar 

  • Sun YY (2019) GNSS brings us back on the ground from ionosphere. Geosci Lett 6:14. https://doi.org/10.1186/s40562-019-0144-0

    Article  Google Scholar 

  • Sun YY, Lin JY, Lin CY, Tasi HF, Chang LC, Chen CY, Chen CH (2016) Ionospheric F2 region perturbed by the 25 April 2015 Nepal earthquake. J Geophys Res Space Phys 121:5778–5784. https://doi.org/10.1002/2015JA022280

    Article  Google Scholar 

  • Sun YY, Liu H, Miyoshi Y, Chang LC, Liu L (2019) El Niño – Southern Oscillation effect on ionospheric tidal/SPW amplitude in 2007–2015 FORMOSAT-3/COSMIC observations. Earth Plant Space 71:35. https://doi.org/10.1186/s40623-019-1009-7

    Article  Google Scholar 

  • Sun YY, Liu HX, Miyoshi Y, Liu LB, Chang LC (2018) El Niño-Southern Oscillation effect on quasi-biennial oscillations of temperature diurnal tides in the mesosphere and lower thermosphere. Earth Planets Space 70:85. https://doi.org/10.1186/s40623-018-0832-6

    Article  Google Scholar 

  • Sun YY, Oyama KI, Liu JY, Jhuang HK, Cheng CZ (2011) The neutral temperature in the ionospheric dynamo region and the ionospheric F region density during Wenchuan and Pingtung Doublet earthquakes. Nat Hazard Earth Sys 11:1759–1768. https://doi.org/10.5194/nhess-11-1759-2011

    Article  Google Scholar 

  • Sun YY, Chen CH, Qing H, Xu R, Su X, Jiang C, Yu T, Wang J, Xu H, Kai L (2021a) Nighttime ionosphere perturbed by the annular solar eclipse on 21 June 2020. J Geophys Res Space Phys 126:e2021JA029419. https://doi.org/10.1029/2021JA029419

    Article  Google Scholar 

  • Sun YY, Shen MM, Tsai YL, Lin CY, Chou MY, Yu T, Kai L, Huang Q, Wang J, Qiu L, Chen CH, Liu JY (2021b) Wave steepening in ionospheric total electron density due to the 21 August 2017 total solar eclipse. J Geophys Res Space Phys 126:e2020JA028931. https://doi.org/10.1029/2020JA028931

    Article  Google Scholar 

  • Takahashi Y, Miyasato R, Adachi T, Adachi K, Sera M, Uchida A, Fukunishi H (2003) Activities of sprites and elves in the winter season, japan. J Atmos Solar-Terr Phys 65(5):551–560

    Article  Google Scholar 

  • Tsuda T, Murayama Y, Nakamura T, Vincent RA, Manson AH, Meek CE, Wilson RL (1994) Variations of the gravity wave characteristics with height, season and latitude revealed by comparative observations. J Atmos Sol Terr Phys 56:555–568

    Article  Google Scholar 

  • VanZandt TE (1985) A model for gravity wave spectra observed by Doppler sounding systems. Radio Sci 20:1323–1330

    Article  Google Scholar 

  • Wan W, Liu L, Pi X, Zhang ML, Ning B, Xiong J, Ding F (2008) Wavenumber-4 patterns of the total electron content over the low latitude ionosphere. Geophys Res Lett 35:L12104. https://doi.org/10.1029/2008GL033755

    Article  Google Scholar 

  • Wang J, Zuo X, Sun YY, Yu T, Wang Y, Qiu L, Mao T, Yan X, Yang N, Qi Y, Lei J, Sun L, Zhao B (2021) Multilayered sporadic-E response to the annular solar eclipse on June 21, 2020. Space Weather 19:e2020SW002643. https://doi.org/10.1029/2020SW002643

    Article  Google Scholar 

  • Xiao Z, Xiao SG, Hao YQ, Zhang DH (2007) Morphological features of ionospheric response to typhoon. J Geophys Res Space Phys 112:A04304. https://doi.org/10.1029/2006JA011671

    Article  Google Scholar 

  • Xu G, Wan W, She C, Du L (2008) The relationship between ionospheric total electron content (TEC) over East Asia and the tropospheric circulation around the Qinghai-Tibet Plateau obtained with a partial correlation method. Adv Space Res 42:219–223

    Article  Google Scholar 

  • Yamazaki Y, Maute A (2016) Sq and EEJ—a review on the daily variation of the geomagnetic field caused by ionospheric dynamo currents. Space Sci Rev 206:299–405

    Article  Google Scholar 

  • Yan X, Sun YY, Yu T, Liu JY, Qi Y, Xia C, Zuo X, Yang N (2018) Stratosphere perturbed by the 2011 Mw9.0 Tohoku earthquake. Geophys Res Lett 45:10050–10056. https://doi.org/10.1029/2018GL079046

    Article  Google Scholar 

  • Yang SS, Hayakawa M (2020) Gravity wave activity in the stratosphere before the 2011 Tohoku earthquake as the mechanism of lithosphere-atmosphere-ionosphere coupling. Entropy 22:110

    Article  Google Scholar 

  • Yang SS, Potirakis SM, Sasmal S, Hayakawa M (2020) Natural time analysis of global navigation satellite system surface deformation: the case of the 2016 Kumamoto earthquakes. Entropy 22(6):674

    Article  Google Scholar 

  • Zhou C, Liu Y, Zhao S, Liu J, Zhang X, Huang J, Shen X, Ni B, Zhao Z (2017) An electric field penetration model for seismo-ionospheric research. Adv Space Res 60(10):2217–2232. https://doi.org/10.1016/j.asr.2017.08.007

    Article  Google Scholar 

Download references

Acknowledgements

We thank everyone who supported the establishment of the MVP-LAI system and appreciate the interest in the data retrieved from the MVP-LAI system.

Funding

This research was funded by the Joint Funds of the National Natural Science Foundation of China (Grant no. U2039205), the National Key Research and Development Project (Grant no. 2018YFE0109700), the Sichuan earthquake Agency-Research Team of GNSS based on geodetic tectonophysics and mantle-crust dynamics in the Chuan-Dian region (Grant no. 201803), the National Natural Science Foundation of China (Grant no. 41804148, 41804154, 42174211, 11805166, 41774048), the Application Foundation of Science and Technology Department of Sichuan Province (Grant no. 2019YJ0302), the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (Grant no. 2018022) and Hefei University of Technology (Grant no. JZ2021HGPB0058). Meanwhile, this work was also supported by the Center for Astronautical Physics and Engineering (CAPE) from the Featured Area Research Center program within the framework of Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan.

Author information

Authors and Affiliations

Authors

Contributions

C.H.C contributed writing, methodology, formal analysis and revision; Y.Y.S. contributed writing, methodology, discussion and revision; K.L. data collection and discussion; C.Z. contributed data collection and discussion; R.X. contributed data collection and discussion; H.Q. contributed data collection and discussion; Y.G. contributed data collection and discussion; T.C. contributed data collection and discussion; F.W. contributed discussion; H.Y. contributed discussion; P.H. contributed discussion; C.C.T. data collection and discussion; X.S. contributed discussion; X.Z. contributed discussion; L.Y. contributed discussion; Y.X. contributed discussion; J.Y.L. contributed discussion; S.Y. contributed discussion;

Corresponding author

Correspondence to Chieh-Hung Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing interests that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CH., Sun, YY., Lin, K. et al. A New Instrumental Array in Sichuan, China, to Monitor Vibrations and Perturbations of the Lithosphere, Atmosphere, and Ionosphere. Surv Geophys 42, 1425–1442 (2021). https://doi.org/10.1007/s10712-021-09665-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-021-09665-1

Keywords

Navigation