Skip to main content

Advertisement

Log in

Andaman–Nicobar–Sumatra Margin Revisited: Analysis of the Lithospheric Structure and Deformation Based on Gravity Modeling and Distribution of Seismicity

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The Andaman–Nicobar–Sumatra subduction margin, with a well-developed Benioff zone down to ~ 200 km depth, extends over 1300 km along strike and has a lateral extent of ~ 200 km. Two-dimensional (2D) profiles based on generalized inversion of free-air gravity anomaly data across different segments of the Andaman–Nicobar sector of the margin were analyzed by reconstructing the geometry of the converging India–Eurasia lithospheric plates. Detailed 2D structures of the Ninetyeast Ridge (NER), fore-arc basin, volcanic arc, back-arc basin, spreading ridge, Sewell Rise, Mergui Ridge and Mergui Basin, and depths of Moho and the lithosphere–asthenosphere boundary were delineated. The volcanic arc is located at a distance of ~ 150–200 km from the trench and is marked by a zone of positive gravity anomaly separated from the trench by the fore-arc basin with a zone of gravity low. The topographic and gravity anomaly patterns show complex geometrical patterns over the volcanic arc due to the presence of a number of regional faults striking parallel to the trench axis developing a series of pull-apart (transtensional) basins as well as the interaction of the spreading ridges on the overriding plate. A narrow zone of negative gravity anomaly (~ − 185 to  − 110 mGal) observed in the gravity model of the margin is interpreted to be associated with fore-arc shear fault above a zone of fractured oceanic crust with a thick sedimentary layer, located above a zone of sharp bending of the eastward converging Indian lithosphere in the fore-arc basin. A high concentration of seismicity and a trench-parallel band of moderate moment energy release along this fault might have been caused by concentrated deformation within the zone of flexing of the descending plate. A wide fore-arc (> 200 km) and the enhanced deformation of the subducting Indian oceanic plate in central sectors possibly resulted from increased interaction between the NER and the Andaman trench and extension in the Andaman back-arc. Appearance of a second moderate energy band and shifting of seismicity toward the trench axis following the 2004 MW 9.2 mega-event are apparently caused by the migration of the stress field from deeper to shallower part of the Indian lithosphere. A similar type of seismicity migration toward shallower part of the descending plate has been recorded along other subduction margins around the globe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ammon CJ, Ji C, Theo HK, Robinson D, Ni S, Hjorleifsdottir V, Kanamori H, Lay T, Das S, Helmberger D, Ichinore G, Polet J, Wald D (2005) Rupture process of the 2004 Sumatra–Andaman earthquake. Science 308:1133–1139

    Google Scholar 

  • Ammon CJ, Kanamori H, Lay T (2008) A great earthquake doublet and seismic stress transfer cycle in the central Kuril islands. Nature 451:561–566

    Google Scholar 

  • Andersen OB, Stenseng L, Piccioni G, Knudsen P (2016) The DTU15 MSS (mean sea surface) and DTU15LAT (lowest astronomical tide) reference surface. In: ESA Living Planet symposium 2016

  • Andrade V, Rajendran K (2014) The April 2012 Indian Ocean earthquakes: seismotectonic context and implications for their mechanisms. Tectonophysics 617:126–139

    Google Scholar 

  • Bandopadhyay PC (2017) Inner-arc volcanism: Barren and Narcondam islands. Geol Soc Lond Mem 47:167–192. https://doi.org/10.1144/M47.12

    Article  Google Scholar 

  • Bandopadhyay PC, Carter A (2017) Geological framework of the Andaman–Nicobar Islands. Geol Soc Lond Mem 47:75–93. https://doi.org/10.1144/M47.6

    Article  Google Scholar 

  • Bandopadhyay PC, Sumit KM, Pal T (2006) The 2005 eruption on Barren Island, Andaman Sea. Curr Sci 90(5):620–622

    Google Scholar 

  • Bansal AR, Dimri VP (2010) Scaling spectral analysis: a new tool for analysis for interpretation of gravity and magnetic data. E-J Earth Sci India 3(1):54–68

    Google Scholar 

  • Bennett SEK, Oskin ME, Iriondot A, Kunk MJ (2016) Slip history of the La Cruz fault: development of a late Miocene transform in response to increased rift obliquity in the northern Gulf of California. Tectonophysics 693:409–435

    Google Scholar 

  • Bevis M, Taylor FW, Schutz BE, Recy J, Isaks BL, Helu S, Singh R, Kendrick E, Stowell J, Taylor B, Calmant B (1995) Geodetic observations of very rapid convergence and back-arc extension at the Tonga Arc. Nature 374:249–251

    Google Scholar 

  • Bilham R (2005) A flying start, then a slow slip. Science 308:1126–1127

    Google Scholar 

  • Bletery Q, Sladen A, Jiang J, Simons MA (2016) Bayesian source model for the 2004 great Sumatra-Andaman earthquake. J Geophys Res 121(7):5116–5135

    Google Scholar 

  • Brune S (2014) Evolution of stress and fault patterns in oblique rift systems: 3-D numerical lithospheric-scale experiments from rift to breakup. Geochem Geophys Geosyst 15:3392–3415

    Google Scholar 

  • Cao A, Gao SS (2002) Temporal variation of seismic b-values beneath north-eastern Japan island arc. Geophys Res Lett 29(48):1–3

    Google Scholar 

  • Cardwell RK, Isacks BL (1978) Geometry of the subducted lithosphere beneath the Banda Sea in eastern Indonesia from seismicity and fault plane solutions. J Geophys Res 83:2825–2838

    Google Scholar 

  • Carter A, Bandopadhyay PC (2017a) Seismicity of the Andaman–Nicobar Islands and Andaman Sea. Geol Soc Lond Mem 47:205–213. https://doi.org/10.1144/M47.14

    Article  Google Scholar 

  • Carter A, Bandopadhyay PC (2017b) The 26 December 2004 earthquake and tsunami. Geol Soc Lond Mem 47:215–224. https://doi.org/10.1144/M47.15

    Article  Google Scholar 

  • Castelltort S, Goren L, Willett SD, Champagnac L, Herman F, Braun L (2012) River drainage patterns in the New Zealand Alps primarily controlled by plate tectonic strain. Nat Geosci 5:744–748

    Google Scholar 

  • Catherine JK, Gahalaut VK, Sahu VK (2005) Constraints on rupture of the December 26, 2004, Sumatra earthquake from far-field GPS observations. Earth Planet Sci Lett 237(3):673–679

    Google Scholar 

  • Chakraborty PP, Khan PK (2009) Cenozoic geodynamic evolution of the Andaman–Sumatra subduction margin: a current understanding. Island Arc 18:184–200

    Google Scholar 

  • Chamoli A, Dimri VP (2010) Spectral analysis of gravity data of NW Himalaya. In: International workshop adding new value to electromagnetic, gravity and magnetic methods for exploration Capri, Italy. EGM 2010. http://www.eageseg.org/data/egm2010/Sessione%20C/Oral%20papers/C_OP_23.pdf

  • Chapple WM, Forsyth DW (1979) Earthquakes and bending of plates at trenches. J Geophys Res 84:6729–6749

    Google Scholar 

  • Charusiri P, Imsamut S, Zhuang Z, Ampaiwan T, Xu X (2006) Paleomagnetism of the earliest Cretaceous to early late Cretaceous sandstones, Khorat Group, Northeast Thailand: implications for tectonic plate movement of the Indochina block. Gondwana Res 9:310–325

    Google Scholar 

  • Chemenda A, Lallemand S, Bokun A (2000) Strain partitioning and interplate friction in oblique subduction zones: constraints provided by experimental modeling. J Geophys Res 105:5567–5581

    Google Scholar 

  • Chlieh M, Avouac JP, Hjorleifsdottir V, Song TRA, Ji C, Sieh K, Sladen A, Hebert H, Prawirodirdjo L, Bock Y, Galetzka J (2007) Coseismic slip and afterslip of the Great Mw 9.15 Sumatra–Andaman Earthquake of 2004. Bull Seismol Soc Am 97(1A):S152–S173

    Google Scholar 

  • Christensen DH, Ruff LJ (1988) Seismic coupling and outer rise earthquakes. J Geophys Res 93:13421–13444

    Google Scholar 

  • Christova C (2004) Stress field in the Ryukyu–Kyushu Wadati–Benioff zone by inversion of earthquake focal mechanisms. Tectonophysics 384:175–189

    Google Scholar 

  • Clift PD (2017) Regional context of the geology of the Andaman–Nicobar accretionary ridge. Geol Soc Lond Mem 47:19–26. https://doi.org/10.1144/M47.3

    Article  Google Scholar 

  • Cloos M (1992) Thrust-type subduction-zone earthquakes and seamount asperities: a physical model for seismic rupture. Geology 20:601–604

    Google Scholar 

  • Conrad CP, Hager BH (1999) Effects of plate bending and fault strength at subduction zones on plate dynamics. J Geophys Res 104:17551–17571

    Google Scholar 

  • Conrad CP, Bilek S, Lithgow-Bertelloni C (2004) Great earthquakes and slab pull: interaction between seismic coupling and plate-slab coupling. Earth Planet Sci Lett 218:109–122

    Google Scholar 

  • Curray JR (2005) Tectonics and history of the Andaman Sea region. J Asian Earth Sci 25:187–232

    Google Scholar 

  • Curray JR, Munasinghe T (1991) Origin of the Rajmahal traps and the 85_E Ridge: preliminary reconstructions of the trace of the Crozet Hotspot. Geology 19:1237–1240

    Google Scholar 

  • Curray JR, Moore DG, Lawyer LA (1979) Tectonics of the Andaman sea and Burma. In: Watkins JS (ed) Geological and geophysical investigations of continent margins. American Association of Petroleum Geologists, Memoir 29:189–198

  • Curray JR, Emmel FJ, Moore DG, Russel WR (1982) Structure, tectonics, and geological history of the northeastern Indian Ocean. In: Nairn AE, Stehli FG (eds) The Ocean Basins and Margins, The Indian Ocean, vol 6. Plenum, New York, pp 399–450

    Google Scholar 

  • Dasgupta S, Mukhopadhyay M, Bhattacharya A, Jana TK (2003) The geometry of the Burma–Andaman subducting lithosphere. J Seismol 7:155–174

    Google Scholar 

  • DeMets C, Gordon RG, Argus DF, Stein D (1994) Effect of recent revisions to the geomagnetic reversal time scale and estimates of current plate motions. Geophys Res Lett 21:2191–2194

    Google Scholar 

  • Dessa JX, Klingelhoefer F, Graindorge D, André C, Permana H, Gutscher MA, Chauhan A, Singh SC, the SUMATRA-OBS Scientific Team (2009) Megathrust earthquakes can nucleate in the forearc mantle: evidence from the 2004 Sumatra event. Geology 37:659–662

    Google Scholar 

  • Dewey JW, Choy G, Presgrave B, Sipkin S, Tarr AC, Benz H, Earle P, Wald D (2007) Seismicity associated with the Sumatra–Andaman Islands earthquake of 26 December 2004. Bull Seismol Soc Am 97:25–42

    Google Scholar 

  • Diament M, Harjono H, Karta K, Deplus C, Dahrin D, Zen MT Jr, Gerard M, Lassal O, Martin A, Malod JA (1992) Mentawai fault zone off Sumatra: a new key to the geodynamics of western Indonesia. Geology 20:259–262

    Google Scholar 

  • Divins DL (2003) Total sediment thickness of the world’s oceans and marginal seas. NOAA National Geophysical Data Center, Boulder

    Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25(4):297–356

    Google Scholar 

  • Earnest A, Rajendran CP, Rajendran K, Anu R, Arun GM (2005) Near-field observations on the co-seismic deformation associated with the 26 December 2004 Andaman–Sumatra earthquake. Curr Sci 89:1237–1244

    Google Scholar 

  • Engdahl ER, Villaseñor A (2002) Global seismicity: 1990–1999. In: Lee WHK, Kanamori H, Jennings PC, Kisslinger C (eds) International handbook of earthquake and engineering seismology, part A (Chapter 41). Academic Press, New York, pp 665–690

    Google Scholar 

  • Engdahl ER, van der Hilst R, Buland R (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull Seismol Soc Am 88:722–743

    Google Scholar 

  • Engdahl ER, Villaseñor A, DeShon HR, Thurber CH (2007) Teleseismic relocation and assessment of seismicity (1918–2005) in the region of the 2004 Mw 9.0 Sumatra–Andaman and 2005 Mw 8.6 Nias Island great earthquakes. Bull Seismol Soc Am 97:S43–S61

    Google Scholar 

  • Fitch TJ (1972) Plate convergence, transcurrent faults and internal deformation adjacent to Southeast Asia and western Pacific. J Geophys Res 77:4432–4460

    Google Scholar 

  • Fowler CMR (2009) The solid Earth: an introduction to global geophysics. Cambridge University Press, Cambridge, U.K., p 685

    Google Scholar 

  • Franke DS, Schnabel M, Ladage S, David T, Neben S, Djajadihardja YS, Muller C, Kopp H, Gaedicke C (2008) The great Sumatra–Andaman earthquakes—imaging the boundary between the ruptures of the great 2004 and 2005 earthquakes. Earth Planet Sci Lett 269:118–130

    Google Scholar 

  • Furlong KP, Chapman DS, Alfred PW (1982) Thermal modeling of the geometry of subduction with implications for the tectonics of the overriding plate. J Geophys Res 87:1786–1802

    Google Scholar 

  • Gahalaut VK, Nagarajan B, Catherine JK, Kumar S (2006) Constraints on 2004 Sumatra–Andaman earthquake rupture from GPS measurements in Andaman–Nicobar Islands. Earth Planet Sci Lett 242:365–374

    Google Scholar 

  • Gahalaut VK, Subrahmanyam C, Kundu B, Catherine JK, Ambikapathy A (2010) Slow rupture in Andaman during 2004 Sumatra–Andaman earthquake: a probable consequence of subduction of 90° E ridge. Geophys J Int 180:1181–1186

    Google Scholar 

  • Ghosh GK, Singh CL (2014) Spectral analysis and Euler deconvolution technique of gravity data to decipher the basement depth in the Dehradun–Badrinath area. J Geol Soc India 83(5):501–512

    Google Scholar 

  • Gopala Rao D, Krishna KS, Sar D (1997) Crustal evolution and sedimentation history of the Bay of Bengal since the Cretaceous. J Geophys Res 102:17747–17768

    Google Scholar 

  • Gordon RG, DeMets C, Royer JY (1998) Evidence for long-term diffuse deformation of the lithosphere of the equatorial Indian Ocean. Nature 395:370–374

    Google Scholar 

  • Gudmundsson Ó, Sambridge M (1998) A regionalized upper mantle (RUM) seismic model. J Geophys Res 103:7121–7136

    Google Scholar 

  • Guerit L, Dominguez S, Malavieille J, Castelltort S (2016) Deformation of an experimental drainage network in oblique collision. Tectonophysics 693:210–222

    Google Scholar 

  • Hahn A, Kind EG, Mishra DC (1976) Depth estimation of magnetic sources by means of Fourier amplitude spectra. Geophys Prospect 24:287–308

    Google Scholar 

  • Hall R (1996) Reconstruction Cenozoic SE Asia. In: Hall R, Blundell DJ (eds) Tectonic evolution of SE Asia. Geological Society, Special Publications 106:153–184

  • Hall R (1997) Cenozoic plate tectonic reconstructions of SE Asia. Geological Society, London, Special Publications 126(1):11–23

  • Hall R (2002) Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions and animations. J Asian Earth Sci 20:353–434

    Google Scholar 

  • Harabaglia P, Doglioni C (1998) Topography and gravity across subduction zones. Geophys Res Lett 25(5):703–706

    Google Scholar 

  • Henstock TJ, McNeill LC, Bull JM, Cook BJ, Gulick SP, Austin JA, Permana H, Djajadihardja YS (2016) Downgoing plate topography stopped rupture in the A.D. 2005 Sumatra earthquake. Geology 44(1):71–74

    Google Scholar 

  • Henstock TJ, McNeill LC, Bull JM, Cook BJ, Gulick SPS, Austin JA, Permana JH, Djajadihardja YS (2017) Downgoing plate topography stopped rupture in the A.D. 2005 Sumatra earthquake. Geology 44:71–74

    Google Scholar 

  • Herceg M, Artemieva IM, Thybo H (2016) Sensitivity analysis of crustal correction for calculation of lithospheric mantle density from gravity data. Geophys J Int 204:687–696

    Google Scholar 

  • Heuret A, Lallemand S (2005) Plate motions, slab dynamics and back-arc deformation. Phys Earth Planet Inter 1491–1492:31–51

    Google Scholar 

  • Heuret A, Funiciello F, Faccenna C, Lallemand S (2007) Plate kinematics, slab shape and back-arc stress: a comparison between laboratory models and current subduction zones. Earth Planet Sci Lett 256:473–483

    Google Scholar 

  • Hsu YJ, Simons M, Avouac J-P, Galetzka J, Sieh K, Chlieh M, Natawidjaja D, Prawirodirdjo L, Bock Y (2006) Frictional afterslip following the Mw 8.7, 2005 Nias–Simeulue earthquake, Sumatra. Science 312:1921–1926

    Google Scholar 

  • Indriana RD (2008) Estimasi ketebalan sedimen dan kedalaman diskontinuitas Mohorovicic daerah Jawa Timur dengan analisis power sectrum dan data anomlai gravitasi. Berkala Fisika 11(2):67–74

    Google Scholar 

  • Ishii M, Shearer P, Houston H, Vidale JE (2005) Extent, duration and speed of the 2004 Sumatra–Andaman earthquake imaged by the hi-net array. Nature 435:933–936

    Google Scholar 

  • Jacob J, Dyment J, Yatheesh V (2014) Revisiting the structure, age, and evolution of the Wharton Basin to better understand subduction under Indonesia. J Geophys Res 119:169–190. https://doi.org/10.1002/2013JB010285

    Article  Google Scholar 

  • Jade S, Ananda MB, Kumar PD, Banerjee S (2005) Co-seismic and post-seismic displacements in Andaman and Nicobar Islands from GPS measurements. Curr Sci 88:1980–1984

    Google Scholar 

  • Kamesh Raju KA, Ramprasad T, Rao PS, Rao BR, Varghese J (2004) New insights into the tectonic evolution of the Andaman basin, northeast Indian Ocean. Earth Planet Sci Lett 221:145–162

    Google Scholar 

  • Kamesh Raju KA, Ray D, Mudholkar A, Murty GPS, Gahalaut VK, Samudrala K, Paropkari AL, Ramachandran R, Prakash LS (2012) Tectonic and volcanic implications of a cratered seamount off Nicobar Island, Andaman Sea. J Asian Earth Sci 56:42–53

    Google Scholar 

  • Kanamori H (1977) The energy release in great earthquakes. J Geophys Res 82(20):2981–2987

    Google Scholar 

  • Karig DE, Moore GF, Curray JR, Lawrence MB (1980) Morphology and shallow structure of the lower trench slope off Nias Island, Sunda Arc. In: Hayes DE (ed) The tectonic and geologic evolution of Southeast Asian seas and islands. American Geophysical Union, Washington, DC, Geophysical Monograph 23:179–208

  • Karner GD, Watts AB (1983) Gravity anomalies and flexure of the lithosphere at mountain ranges. J Geophys Res 87:2923–2948

    Google Scholar 

  • Kennett BLN, Cummins PR (2005) The relationship of the seismic source and subduction zone structure for the 2004 December 26 Sumatra–Andaman earthquake. Earth Planet Sci Lett 239:1–8

    Google Scholar 

  • Khan PK (2005) Variation in dip-angle of the Indian plate subducting beneath the Burma plate and its tectonic implications. Geosci Int J 9:227–234

    Google Scholar 

  • Khan PK (2007) Lithospheric deformation under pre- and post-seismic stress fields along the Nicobar–Sumatra subduction margin during 2004 Sumatra mega-event and its tectonic implications. Gondwana Res 12:468–475

    Google Scholar 

  • Khan P, Chakraborty PP (2005) Two-phase opening of Andaman Sea: a new seismotectonics insight. Earth Planet Sci Lett 229:259–271

    Google Scholar 

  • Khan PK, Chakraborty PP (2009) Plate geometry, plate rheology, and their relation to shallow-focus mega-thrust seismicity with special reference to 26 December 2004 Sumatra event. J Asian Earth Sci 34:480–491

    Google Scholar 

  • Khan PK, Chakraborty PP, Tarafder G, Mohanty S (2012) Testing the intraplate origin of mega-earthquakes at subduction margins. Geosci Front 3:473–481

    Google Scholar 

  • Khan PK, Shamim Sk, Mohanty M, Kumar P, Banerjee J (2017) Myanmar–Andaman–Sumatra subduction margin revisited: insights of arc-specific deformations. J Earth Sci 28:683–694

    Google Scholar 

  • Khan PK, Banerjee J, Shamim Sk, Mohanty M (2018) Long-term seismic observations along Myanmar–Sunda subduction margin: insights for 2004 Mw > 9.0 earthquake. Int J Earth Sci 107:2383–2392

    Google Scholar 

  • Khan PK, Shamim Sk, Mohanty SP, Aggarwal SK (2020) Change of stress patterns during 2004 MW 9.3 off-Sumatra mega-event: insights from ridge–trench interaction for plate margin deformation. Geol J 55:372–389

    Google Scholar 

  • Kimura G (1986) Oblique subduction and collision: fore-arc tectonics of the Kurile Arc. Geology 14:404–407

    Google Scholar 

  • Kohlstedt DL, Evans B, Mackwell SJ (1995) Strength of the lithosphere: constraints imposed by laboratory experiments. J Geophys Res 100:17587–17602

    Google Scholar 

  • Krishna KS, Gopala Rao D, SubbaRaju LV, Chaubey AK, Shcherbakov VS, Pilipenko AI, Murthy IVR (1999) Paleocene onspreading-axis hotspot volcanism along the Ninetyeast Ridge: an interaction between the Kerguelen hotspot and the Wharton spreading center. Proc Indian Acad Sci Earth Planet Sci 108:255–267

    Google Scholar 

  • Kuchay OA, Bushenkova NA, Tataurova AA (2015) Structure of the lithosphere and seismotectonic deformations in contact zone of lithospheric plates in the Sumatra Island region. Geodyn Tectonophys 6(1):77–89

    Google Scholar 

  • Kumar RTR, Windley BF, Rajesh VJ, Santosh M (2013) Elastic thickness structure of the Andaman subduction zone: implications for convergence of the Ninetyeast Ridge. J Asian Earth Sci 78:291–300

    Google Scholar 

  • Kumar P, Srijayanthi G, Kumar MR (2016) Seismic evidence for tearing in the subducting Indian slab beneath the Andaman arc. Geophys Res Lett 43:4899–4904

    Google Scholar 

  • Laluraj CM, Balachandran KK, Sabu P, Panampunnayil SU (2006) Persistent volcanic signature observed around Barren Island, Andaman Sea, India. Mar Geophys Res 27:283–288

    Google Scholar 

  • Lay T, Kanamori H, Ammon CJ, Nettles M, Ward SN, Aster RC, Beck SL, Bilek SL, Brudzinski MR, Butler R, DeShon HR, Ekstrom G, Satake K, Sipkin S (2005) The great Sumatra–Andaman earthquake of 26 December 2004. Science 308:1127–1133

    Google Scholar 

  • Lay T, Kanamori H, Ammon CJ, Hutko AR, Furlong K, Rivera L (2009) The 2006–2007 Kuril Islands great earthquake sequence. J Geophys Res 114:B11308

    Google Scholar 

  • Le Dain AY, Tapponnier P, Molnar P (1984) Active faulting and tectonics of Burma and surrounding regions. J Geophys Res 89:453–472

    Google Scholar 

  • Leever KA, Gabrielsen RH, Sokoutis D, Willingshofer L (2011) The effect of convergence angle on the kinematic evolution of strain partitioning in transpressional brittle wedges: insight from analog modeling and high-resolution digital image analysis. Tectonics 30(2):2TC013. https://doi.org/10.1029/2010TC002823

    Article  Google Scholar 

  • Levchenko OV, Sager WW, Frey FA, Pringle MS, Krishna KS, Gopala Rao D, Gauntlett E, Mervine E, Marinova YG, Piotrowski A, Paul CF, Huang S, Eisin AE (2010) New geological-geophysical data on the structure of the Ninetyeast Ridge. Dokl Earth Sci 434:1208–1213

    Google Scholar 

  • Lin J-Y, Le Pichon X, Rangin C, Sibuet J-C, Maury T (2009) Spatial aftershock distribution of the 26 December 2004 great Sumatra–Andaman earthquake in the northern Sumatra area. Geochem Geophys Geosyst 10:Q05006

    Google Scholar 

  • Liu X, McNally KC, Shen ZK (1995) Evidence for a role in the downgoing slab in earthquake slip partitioning at oblique subduction zones. J Geophys Res 100:15351–15372

    Google Scholar 

  • Lorito S, Piatanesi A, Cannelli V, Romano F, Melini D (2010) Kinematics and source zone properties of the 2004 Sumatra–Andaman earthquake and tsunami: nonlinear joint inversion of tide gauge, satellite altimetry, and GPS data. J Geophys Res 115:B02304

    Google Scholar 

  • Lubis AM, Hashima A, Sato T (2013) Analysis of afterslip distribution following the 2007 September 12 southern Sumatra earthquake using poroelastic and viscoelastic media. Geophys J Int 192:18–37

    Google Scholar 

  • Lücke OH, Arroyo IG (2015) Density structure and geometry of the Costa Rican subduction zone from 3D gravity modelling and local earthquake data. Solid Earth 6(4):1169–1183

    Google Scholar 

  • Maung H (1987) Transcurrent movement in the Mayanmar Andaman Sea region. Geology 15:911–912

    Google Scholar 

  • Maus S, Dimri VP (1995) Potential field power spectrum inversion for scaling geology. J Geophys Res 100:12605–12616

    Google Scholar 

  • McCaffrey R (1991) Slip vectors and stretching of the Sumatran forearc. Geology 19:881–884

    Google Scholar 

  • McCaffrey R (1992) Oblique plate convergence, slip vectors, and forearc deformation. J Geophys Res 97:8905–8915

    Google Scholar 

  • McCaffrey R (1993) On the role of the upper plate in great subduction zone earthquake. J Geophys Res 98:11953–11966

    Google Scholar 

  • McCaffrey R, Zwick PC, Bock Y, Prawirodirdjo L, Genrich JF, Stevens CW, Puntodewo SSO, Subarya C (2000) Strain partitioning during oblique plate convergence in northern Sumatra: geodetic and seismologic constraints and numerical modeling. J Geophys Res 105:28363–28376

    Google Scholar 

  • McClay K, Whitehouse P, Dooley T, Richards M (2004) 3D evolution of fold and thrust belts formed by oblique convergence. Mar Pet Geol 21:857–877

    Google Scholar 

  • McNeill LC, Henstock TJ (2014) Forearc structure and morphology along the Sumatra–Andaman subduction zone. Tectonics 33:112–134. https://doi.org/10.1002/2012TC003264

    Article  Google Scholar 

  • Meltzner AJ, Sieh K, Abrams M, Agnew DC, Hudnut KW, Avouac JP, Natawidjaja DH (2006) Uplift and subsidence associated with the great Aceh–Andaman earthquake of 2004. J Geophys Res 111:B09101

    Google Scholar 

  • Michael L, Krishna KS (2011) Dating of the 85° E ridge (northeastern Indian Ocean) using marine magnetic anomalies. Curr Sci 100:1314–1322

    Google Scholar 

  • Mishra OP, Chakraborty GK, Singh OP, Kayal JR, Ghosh D (2007a) Aftershock investigation in the Andaman–Nicobar Islands: an antidote to public panic. Seismol Res Lett 78:591–600

    Google Scholar 

  • Mishra OP, Kayal JR, Chakraborty GK, Singh OP, Ghosh D (2007b) Aftershock Investigation in the Andaman–Nicobar Islands of India and its seismotectonic implications. Bull Seismol Soc Am 97:S71–S85

    Google Scholar 

  • Mishra OP, Zhao D, Ghosh C, Wang Z, Singh OP, Ghosh B, Mukherjee KK, Saha DK, Chakraborty GK, Gaonkar SG (2011) Role of crustal heterogeneity beneath Andaman–Nicobar Islands and its implications for coastal hazard. Nat Hazards 57:51–64

    Google Scholar 

  • Mitchell AHG (1981) Phanerozoic plate boundaries in mainland SE Asia, the Himalayas and Tibet. J Geol Soc 138:109–122

    Google Scholar 

  • Moeremans R, Singh SC (2015) Forearc basin deformation in the Andaman-Nicobar segment of the Sumatra-Andaman subduction zone: insight from high-resolution seismic reflection data. Tectonics 34:1736–1750

    Google Scholar 

  • Moeremans R, Singh SC, McArdle J, Johansen K (2014) Seismic images of structural variations along the deformation front of the Andaman–Sumatra subduction zone: implications for rupture propagation and tsunamigenesis. Earth Planet Sci Lett 386:75–85

    Google Scholar 

  • Morley CK (2017) Cenozoic rifting, passive margin development and strike-slip faulting in the Andaman Sea: a discussion of established v. new tectonic models. Geol Soc Lond Mem 47:27–50. https://doi.org/10.1144/M47.4

    Article  Google Scholar 

  • Morley CK, Alvey A (2015) Is spreading prolonged, episodic or incipient in the Andaman Sea? Evidence from deepwater sedimentation. J Asian Earth Sci 98:446–456

    Google Scholar 

  • Morley CK, Searle M (2017) Regional tectonics, structure and evolution of the Andaman–Nicobar Islands from ophiolite formation and obduction to collision and back-arc spreading. Geol Soc Lond Mem 47:51–74. https://doi.org/10.1144/M47.5

    Article  Google Scholar 

  • Mukhopadhyay M (1988) Gravity anomalies and deep structure of the Andaman arc. Mar Geophys Res 9:197–210

    Google Scholar 

  • Mukhopadhyay M, Dasgupta S (1988) Deep structure and tectonics of the Burmese arc: constraints from earthquake and gravity data. Tectonophysics 149:299–322

    Google Scholar 

  • Mukhopadhyay M, Krishna MR (1991) Gravity field and deep structure of the Bengal fan and its surrounding continental margins, northeast Indian Ocean. Tectonophysics 186:365–386

    Google Scholar 

  • Mukhopadhyay M, Krishna MR (1995) Gravity anomalies and deep structure of the Ninetyeast Ridge north of the equator, Eastern Indian Ocean—a hot spot trace model. Mar Geophys Res 17:201–216

    Google Scholar 

  • Müller RD, Roest WR, Royer JY, Gahagan LM, Sclater JG (1997) Digital isochrones of the world’s ocean floor. J Geophys Res 102:3211–3214

    Google Scholar 

  • Patriat P, Achache J (1984) India–Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature 311:615–621

    Google Scholar 

  • Paul J, Rajendran C, Lowry A, Andrade V, Rajendran K (2012) Andaman postseismic deformation observations: still slipping after all these years? Bull Seismol Soc Am 102(1):343–351

    Google Scholar 

  • Peltzer G, Tapponnier P (1988) Formation and evolution of strike-slip faults, rifts, and basins during the India–Asia collision: an experimental approach. J Geophys Res 93:15085–15117

    Google Scholar 

  • Pesicek JD, Thurber CH, Zhang H, DeShon HR, Engdahl ER, Widiyantoro S (2010) Teleseismic double-difference relocation of earthquakes along the Sumatra–Andaman subduction zone using a 3-D model. J Geophys Res 115:B10303

    Google Scholar 

  • Ponko SC, Peacock SM (1995) Thermal modeling of the southern Alaska subduction zone: insight into the petrology of the subducting slab and overlying mantle wedge. J Geophys Res 100:22117–22128

    Google Scholar 

  • Prawirodirdjo L, Bock Y, McCaffrey R, Genrich J, Calais E, Stevens CW, Puntodewo SSO, Subarya C, Rais J, Zwick P, Fauzi RM (1997) Geodetic observations of interseismic strain segmentation at the Sumatra subduction zone. Geophys Res Lett 24:2601–2604

    Google Scholar 

  • Prawirodirdjo L, McCaffrey R, Chadwell CD, Bock Y, Subarya C (2010) Geodetic observations of an earthquake cycle at the Sumatra subduction zone: role of interseismic strain segmentation. J Geophys Res Solid Earth 115(B3):B03414

    Google Scholar 

  • Radhakrishna M, Lasitha S, Mukhopadhyay M (2008) Seismicity, gravity anomalies and lithospheric structure of the Andaman arc, North-eastern Indian Ocean. Tectonophysics 460:248–262

    Google Scholar 

  • Rajendran CP, Rajendran K, Anu R, Earnest A, Machado T, Mohan PM, Freymueller J (2007) Crustal deformation and seismic history associated with the 2004 Indian Ocean earthquake: a perspective from the Andaman–Nicobar Islands. Bull Seismol Soc Am 97(1A):S174–S191

    Google Scholar 

  • Rajendran K, Rajendran CP, Earnest A, Prasad GR, Dutta K, Ray DK, Anu R (2008) Age estimates of coastal terraces in the Andaman and Nicobar Islands and their tectonic implications. Tectonophysics 455(1):53–60

    Google Scholar 

  • Ramsey LA, Walker RT, Jackson J (2007) Geomorphic constraints on the active tectonics of Southern Taiwan. Geophys J Int 170:1357–1372

    Google Scholar 

  • Rapp RH (1998) Comparison of altimeter-derived and ship gravity anomalies in the vicinity of the Gulf of California. Mar Geodesy 21(4):245–259

    Google Scholar 

  • Rodolfo KS (1969) Bathymetry and marine geology of the Andaman basin and tectonic implications for Southeast Asia. Geol Soc Am Bull 80:1203–1230

    Google Scholar 

  • Ruff L, Kanamori H (1983) Seismic coupling and uncoupling at subduction zones. Tectonophysics 99:99–117

    Google Scholar 

  • Sandwell DT, Müller RD, Smith WHF, Garcia E, Francis R (2014) New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346(6205):65–67. https://doi.org/10.1126/science.1258213

    Article  Google Scholar 

  • Saylor JE, DeCelles P, Gehrels G, Murphy M, Zhang R, Kapp PA (2010) Basin formation in the high Himalaya by arc-parallel extension and tectonic damming: Zhada basin, southwestern Tibet. Tectonics 29:TC1004

    Google Scholar 

  • Schellart WP (2008) Subduction zone trench migration: slab driven or overriding-plate-driven? Phys Earth Planet Inter 170:73–88

    Google Scholar 

  • Scholz CH, Campos J (1995) On the mechanism of seismic decoupling and back-arc spreading at subduction zones. J Geophys Res 100:22103–22115

    Google Scholar 

  • Scotese CR, Gahagan LM, Larson RL (1988) Plate tectonic reconstructions of the Cretaceous and Cenozoic ocean basins. Tectonophysics 155:27–48

    Google Scholar 

  • Sevilgen V, Stein RS, Pollitz FF (2012) Stress imparted by the great 2004 Sumatra quake shut down transforms and activated rifts up to 400 km away in the Andaman Sea. Proc Natl Acad Sci U S A 109:15152–15156

    Google Scholar 

  • Shamim Sk, Khan PK, Mohanty SP (2019) Stress reconstruction and lithosphere dynamics along the Sumatra subduction margin. J Asian Earth Sci 170:174–187

    Google Scholar 

  • Singh SC, Moeremans R (2017) Anatomy of the Andaman–Nicobar subduction system from seismic reflection data. Geol Soc Lond Mem 47:193–204

    Google Scholar 

  • Singh SC, Carton H, Tapponnier P, Hananto ND, Chauhan APS, Hartoyo D, Bayly M, Moeljopranoto S, Bunting T, Christie P, Lubis H, Martin J (2008) Seismic evidence for broken oceanic crust in the 2004 Sumatra earthquake epicentral region. Nat Geosci 1:777–781

    Google Scholar 

  • Singh SC, Chauhan APS, Calvert AJ, Hananto ND, Ghosal D, Rai A, Carton H (2012) Seismic evidence of bending and unbending of subducting oceanic crust and the presence of mantle megathrust in the 2004 Great earthquake rupture zone. Earth Planet Sci Lett 321–322:166–176

    Google Scholar 

  • Singh SC, Moeremans R, McArdle J, Johansen K (2013) Seismic images of the sliver strike-slip fault and back thrust in the Andaman–Nicobar region. J Geophys Res 118:5208–5224

    Google Scholar 

  • Smith WHF, Sandwell DT (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science 277:1957–1962

    Google Scholar 

  • Socquet A, Vigny C, Chamot-Rooke N, Simons W, Rangin C, Ambrosius B (2006) India and Sunda plates motion and deformation along their boundary in Myanmar determined by GPS. J Geophys Res 111:B05406

    Google Scholar 

  • Song TRA, Simons M (2003) Large trench-parallel gravity variations predict seismogenic behavior in subduction zones. Science 301:630–633

    Google Scholar 

  • Spector A, Grant FS (1970) Statistical models for interpreting aeromagnetic data. Geophysics 35(2):293–302

    Google Scholar 

  • Stein S, Okal EA (2007) Ultra-long period seismic study of the December 2004 Indian Ocean earthquake and implications for regional tectonics and the subduction process. Bull Seismol Soc Am 97:S279–S295

    Google Scholar 

  • Studinger M, Miller H (1999) Crustal structure of the Filchner–Ronne Shelf and Coats Land, Antarctica from gravity and magnetic data: implications for the breakup of Gondwana. J Geophys Res 104(B9):20379–20394

    Google Scholar 

  • Studinger M, Kurinin RG, Aleshkova N, Miller H (1997) Power spectra analysis of gravity data from the Weddell Sea embayment and adjacent areas. Terra Antarct 4(1):23–26

    Google Scholar 

  • Subarya C, Mohamed C, Prawirodirdjo L, Avouac J-P, Bock Y, Sieh K, Meltzner AJ, Natawidjaja DH, McCaffrey R (2006) Plate-boundary deformation associated with the great Sumatra–Andaman earthquake. Nature 440:46–51

    Google Scholar 

  • Subrahmanyam C, Gireesh R, Shyam C, Kamesh Raju KA, Gopala Rao D (2008) Geophysical characteristics of the Ninetyeast Ridge—Andaman Island arc/trench convergent zone. Earth Planet Sci Lett 266:29–45

    Google Scholar 

  • Tapponnier P, Peltzer G, Armijo R (1986) On the mechanics of the collision between India and Asia. In: Coward MP, Ries AC (eds) Collision tectonics. Geological Society of London Special Publication 19:115–157

  • Talwani M, Heirtzler JR (1964) Computation of magnetic anomalies caused by two dimensional structures of arbitrary shape. Computers in the mineral industries, part 452 1: Stanford University publications. Geol Sci 9:464–480

  • Talwani M, Lamar WJ, Landisman M (1959) Rapid gravity computations for two-dimensional bodies with application to the Mendocino submarine fracture zone. J Geophys Res 64:49–59

    Google Scholar 

  • Tiwari VM, Diament M, Singh SC (2003) Analysis of satellite gravity and bathymetry data over Ninety-east Ridge: variation in the compensation mechanism and implication for emplacement process. J Geophys Res 108:0148–0227

    Google Scholar 

  • Treitel S, Clement WG, Kaul RK (1971) The spectral determination of depths of buried magnetic basement rocks. Geophys J Roy Astron Soc 24:415–428

    Google Scholar 

  • Tselentis G, Stavrakakis G, Makropoulos K, Latousakis J, Drakopoulos J (1988) Seismic moments of earthquakes at the western Hellenic arc and their application to the seismic hazard of the area. Tectonophysics 148:73–82

    Google Scholar 

  • Turcotte DL, Schubert G (1982) Geodynamics applications of continuum physics to geological problems. Wiley, New York

    Google Scholar 

  • Van Keken PE (2003) The structure and dynamics of the mantle wedge. Earth Planet Sci Lett 215:323–338

    Google Scholar 

  • Weissel JK, Anderson RN, Geller CA (1980) Deformation of the Indo-Australian plate. Nature 287:284–291

    Google Scholar 

  • Wells RE, Blakely RJ, Sugiyama Y, Scholl DW, Dinterman PA (2003) Basin-centered asperities in great subduction zone earthquakes: a link between slip, subsidence, and subduction erosion? J Geophys Res 108:2507. https://doi.org/10.1029/2002JB002072

    Article  Google Scholar 

  • Wieczorek MA (2007) Gravity and topography of the terrestrial planets. In: Treatise on Geophysics Elsevier-Pergamon, Oxford, United Kingdom 10:165–206

Download references

Acknowledgements

The study was supported by the Department of Science and Technology, Government of India, New Delhi. The authors are thankful to Lisa C. McNeill and Natasha Bushenkova for their review comments and suggestions, which has improved the manuscript greatly. The authors are also grateful to O.B. Andersen for sharing the DTU15 model gravity data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prosanta Kumar Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamim, S., Khan, P.K., Mohanty, S.P. et al. Andaman–Nicobar–Sumatra Margin Revisited: Analysis of the Lithospheric Structure and Deformation Based on Gravity Modeling and Distribution of Seismicity. Surv Geophys 42, 239–275 (2021). https://doi.org/10.1007/s10712-021-09633-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-021-09633-9

Keywords

Navigation