Skip to main content

Advertisement

Log in

Contemporary (1960–2012) Evolution of the Climate and Surface Mass Balance of the Greenland Ice Sheet

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

We assess the contemporary (1960–2012) surface mass balance (SMB) of the Greenland ice sheet (GrIS), its individual components and trends. We use output of the high-resolution (11 km) regional atmospheric climate model (RACMO2), evaluated with automatic weather stations and GRACE data. A persistent negative North Atlantic oscillation index over the last 6 years resulted in the summertime advection of relatively warm continental air toward the GrIS. Added to the enhanced radiative forcing by increased CO2 levels, this has resulted in an increase in near-surface temperature of more than 2 K during 2007–2012 compared to 1960–1990. The associated decrease in albedo led to an extra absorption of shortwave radiation of ∼6 Wm−2 (11 %) in the summer months, which is the main driver of enhanced surface melting and runoff in recent years. From 1990 onward, we see a steady increase in meltwater runoff and an associated decrease in the SMB, accelerating after 2005, with the record low SMB year in 2010. Despite the fact that the GrIS was subject to the highest surface melt rates in 2012, relatively high accumulation rates prevented 2012 to set a record low SMB. In 2012, melt occurred relatively high on the ice sheet where melt water refreezes in the porous firn layer. Up to 2005, increased runoff was partly offset by increased accumulation rates. Since then, accumulation rates have decreased, resulting in low SMB values. Other causes of decreased SMB are the loss of firn pore space and decreasing refreezing rates in the higher ablation area. The GrIS has lost in total 1,800 ± 300 Gt of mass from surface processes alone since 1990 and about half of that in the last 6 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bamber J, Layberry R, Gogineni S (2001) A new ice thickness and bed data set for the Greenland ice sheet 1. Measurement, data reduction, and errors. J Geophys Res 106:33773–33780

    Article  Google Scholar 

  • Bartholomew I, Nienow P, Sole A, Mair D et al (2011) Supraglacial forcing of subglacial drainage in the ablation zone of the Greenland ice sheet. Geophys Res Lett 38:L08502

    Article  Google Scholar 

  • Bekryaev R, Polyakov I, Alexeev V (2010) Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. J Clim 23:3888–3906

    Article  Google Scholar 

  • Box JE, Fettweis X, Stroeve JC, Tedesco M, Hall DK, Steffen K (2012) Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers. Cryosphere 6(4):821–839

    Article  Google Scholar 

  • Cassano JJ, Box JE, Bromwich DH, Li L, Steffen K (2001) Evaluation of Polar MM5 simulations of Greenland’s atmospheric circulation. J Geophys Res 106(D24):33867

    Article  Google Scholar 

  • Catania G, Neumann T (2010) Persistent englacial drainage features in the Greenland Ice Sheet. Geophys Res Lett 320:778

    Google Scholar 

  • Cheng M, Tapley B (2004) Variations in the Earth’s oblateness during the past 28 years. J Geophys Res Solid Earth 109:B09402

    Article  Google Scholar 

  • Chylek P, Folland C, Lesins G, Dubey M et al (2009) Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation. Geophys Res Lett 36:L14801

    Article  Google Scholar 

  • Comiso JC (2012) Large decadal decline of the Arctic multiyear ice cover. J Clim 25(4):1176–1193

    Article  Google Scholar 

  • Ettema J, Van den Broeke M, Van Meijgaard E, Van de Berg W, Bamber J, Box J, Bales R (2009) Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling. Geophys Res Lett 36:L12501

    Google Scholar 

  • Ettema J, Van den Broeke MR, Van Meijgaard E, Van de Berg W (2010) Climate of the Greenland ice sheet using a high-resolution climate model, Part 1: Evaluation. Cryosphere 4:511–527

    Article  Google Scholar 

  • Fettweis X, Hanna E, Gallée H, Huybrechts P et al (2008) Estimation of the Greenland ice sheet surface mass balance for the 20th and 21st centuries. Cryosphere 2:117–129

    Article  Google Scholar 

  • Fettweis X, Tedesco M, Van den Broeke M, Ettema J (2011) Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models. Cryosphere 5:59–375

    Article  Google Scholar 

  • Fettweis X, Hanna E, Lang C, Belleflamme A, Erpicum M, Gallée H (2012) Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet. Cryosphere 7:241–248

    Article  Google Scholar 

  • Flanner MG, Shell KM, Barlage M, Perovich DK, Tschudi MA (2011) Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008. Nat Geosci 4(3):151

    Article  Google Scholar 

  • Francis J, Hunter E (2007) Changes in the fabric of the Arctic’s greenhouse blanket. Environ Res Lett 2:045011

    Article  Google Scholar 

  • Gardner A, Moholdt G, Wouters B, others GW (2011) Sharply increased mass loss from glaciers and ice caps in the canadian arctic archipelago. Nature 473:357–360

    Article  Google Scholar 

  • Graversen R, Mauritsen T, Tjernström M, Källén E et al (2008) Vertical structure of recent Arctic warming. Nature 541(3):53–56

    Article  Google Scholar 

  • Hanna E, Mernild SH, Cappelen J, Steffen K (2012) Recent warming in Greenland in a long-term instrumental (1881–2012) climatic context: I. Evaluation of surface air temperature records. Environ Res Lett 7:1–16

    Google Scholar 

  • Hurrell J, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic oscillation. Geophys Monogr Ser 134:279

    Google Scholar 

  • Johannessen O, Bengtsson L, Miles M et al (2004) Arctic climate change: Observed and modelled temperature and sea ice variability. Tellus A 56:328–341

    Article  Google Scholar 

  • Kjeldsen KK, Van Angelen JH, Khan SA, Wahr J, Korsgaard NJ, Kjær KH, Bjørk AA, Hurkmans RTWL, Van den Broeke MR, Bamber JL (2012) Improved ice loss estimate of the northwestern Greenland Ice Sheet. J Geophys Res:1–11

  • Kuipers Munneke P, van den Broeke M, Lenaerts J, Flanner M, Gardner A, Van de Berg W (2011) A new albedo parameterization for use in climate models over the Antarctic ice sheet. J Geophys Res 116:D05114

    Google Scholar 

  • Lenaerts JTM, Van den Broeke MR, Van Angelen JH, Van Meijgaard E, Déry SJ (2012) Drifting snow climate of the Greenland ice sheet: a study with a regional climate model. Cryosphere 6(4):891–899

    Google Scholar 

  • Lenaerts JTM, Van Angelen JH, Van den Broeke MR, Gardner AS, Wouters B, Van Meijgaard E (2013) Irreversible mass loss of Canadian Arctic Archipelago glaciers. Geophys Res Lett 40:1–5

    Article  Google Scholar 

  • Mahajan S, Zhang R, Delworth T (2011) Impact of the Atlantic Meridional Overturning Circulation (AMOC) on Arctic surface air temperature and sea ice variability. J Clim 24:6573–6581

    Article  Google Scholar 

  • Moon T, Joughin I, Smith B, Howat I (2012) 21st century evolution of Greenland outlet glacier velocities. Science 336(6081):576–578

    Article  Google Scholar 

  • Nghiem SV, Hall DK, Mote TL, Tedesco M, Albert MR, Keegan K, Shuman C, DiGirolamo N, Neumann G (2012) The extreme melt across the Greenland ice sheet in 2012. Geophys Res Lett 39:L20502

    Article  Google Scholar 

  • Nick F, Vieli A, Howat IM, Joughin I (2009) Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nat Geosci 2

  • Overland JE, Francis JA, Hanna E, Wang M (2012) The recent shift in early summer Arctic atmospheric circulation. Geophys Res Lett 39(19):L19804

    Article  Google Scholar 

  • Petersen GN, Kristjansson JE, Olafsson H (2004) Numerical simulations of Greenland’s impact on the Northern Hemisphere winter circulation. Tellus A 56(2):102–111

    Google Scholar 

  • Rignot E, Velicogna I, Van den Broeke MR, Monaghan A, Lenaerts J (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett 38(5):L05503

    Article  Google Scholar 

  • Sasgen I, Vanden Broeke M, Bamber JL, Rignot E, Sørensen LS, Wouters B, Martinec Z, Velicogna I, Simonsen SB (2012) Timing and origin of recent regional ice-mass loss in Greenland. Earth Planet Sci Lett 333(334(C):293–303

    Article  Google Scholar 

  • Schrama E, Wouters B, Vermeersen B (2011) Present day regional mass loss of Greenland observed with satellite gravimetry. Surv Geophys

  • Screen J, Simmonds I (2010) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464:1334–1337

    Article  Google Scholar 

  • Shepherd A, Ivins ER et al (2012) A reconciled estimate of ice sheet mass balance. Science 338(6111):1183–1189

    Article  Google Scholar 

  • Simmons A, Uppala S, Dee D, Kobayashi S (2007) ERA-Interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter.

  • Stroeve JC, Holland M, Meier W et al (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34:L09501

    Article  Google Scholar 

  • Stroeve JC, Kattsov V, Barrett A et al (2012) Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys Res Lett 39:L16502

    Article  Google Scholar 

  • Swenson S, Chambers D, Wahr J (2008) Estimating geocenter variations from a combination of GRACE and ocean model output. J Geophys Res Solid Earth 113:B08410

    Article  Google Scholar 

  • Tapley B, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett

  • Tedesco M, Fettweis X, Van den Broeke M, Van de Wal R, Smeets C, Van de Berg W, Serreze M, Box J (2011) The role of albedo and accumulation in the 2010 melting record in Greenland. Environ Res Lett 6:014005

    Google Scholar 

  • Tedesco M, Fettweis X, Mote T, Wahr J, Alexander P, Box JE, Wouters B (2013) Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data. The Cryosphere 7:615–630

    Article  Google Scholar 

  • Unden P, Rontu L, Järvinen H, Lynch P, Calvo J, Cats G, Cuhart J, Eerola K, et al (2002) HIRLAM-5 Scientific Documentation: December 2002, Tech. rep.

  • Uppala S, Kållberg P et al (2005) The era40 reanalysis. Quart J R Meteorol Soc 131(612):2961–3012

    Article  Google Scholar 

  • Van Angelen JH, Van den Broeke MR, Kwok R (2011) The Greenland Sea Jet: A mechanism for wind-driven sea ice export through Fram Strait. Geophys Res Lett 38:12805

    Article  Google Scholar 

  • Van Angelen JH, Van den Broeke MR, Van de Berg WJ (2011) Momentum budget of the atmospheric boundary layer over the Greenland ice sheet and its surrounding seas. J Geophys Res 116:D10101

    Google Scholar 

  • Van Angelen JH, Lenaerts JTM, Lhermitte S, Fettweis X, Kuipers Munneke P, Van den Broeke MR, Van Meijgaard E, Smeets CJPP (2012) Sensitivity of Greenland Ice Sheet surface mass balance to surface albedo parameterization: a study with a regional climate model. Cryosphere 6(5):1175–1186

    Article  Google Scholar 

  • Van de Wal R, Boot W, Smeets C, Snellen H, Van den Broeke MR, Oerlemans J (2012) Twenty-one years of mass balance observations along the K-transect, West Greenland. Earth Syst Sci Data 4:31–35

    Google Scholar 

  • Van den Broeke M, Smeets P, Ettema J (2008) Partitioning of melt energy and meltwater fluxes in the ablation zone of the west Greenland ice sheet. Cryosphere 2:179–189

    Article  Google Scholar 

  • Van den Broeke MR, Bamber J, Ettema J, Rignot E, Schrama E, Van de Berg W, Van Meijgaard E, Velicogna I, Wouters B (2009) Partitioning recent Greenland mass loss. Science 326(5955):984

    Article  Google Scholar 

  • Van Meijgaard E, Van Ulft L, Van de Berg W, Bosveld F, Van den Hurk B, Lenderink G, Siebesma A (2008) The KNMI regional atmospheric climate model RACMO version 2.1, Tech. Rep. 302.

  • Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time-variable gravity from GRACE: First results. Geophys Res Lett 31:L11501

    Article  Google Scholar 

  • White PW (2004) IFS Documentation CY23r4 ECMWF: Part IV Physical processes

  • Wouters B (2010) Identication and modelling of sea level change contributors On GRACE satellite gravity data and their application to climate monitoring. Ph.D. thesis, Delft University of Technology

  • Wouters B, Chambers D, Schrama E (2008) GRACE observes smallscale mass loss in Greenland. Geophys Res Lett 35:L20501

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. van Angelen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Angelen, J.H., van den Broeke, M.R., Wouters, B. et al. Contemporary (1960–2012) Evolution of the Climate and Surface Mass Balance of the Greenland Ice Sheet. Surv Geophys 35, 1155–1174 (2014). https://doi.org/10.1007/s10712-013-9261-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-013-9261-z

Keywords

Navigation