Skip to main content
Log in

Tracing an Intra-montane Fault: An Interdisciplinary Approach

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

This paper presents the results of combined geophysical and morphostructural research of a significant tectonic lineament forming the boundary between the core Bohemian Forest (Šumava) Mts. and its foothills of Pošumaví. The exact course, length and character of the fault have not yet been studied in detail despite its possible role in the uplift of the mountain range. To assess the fault course, length and continuity, we have employed a combination of geophysical, morphological and morphostructural methods. These indirect methods had to be applied as the fault only rarely outcrops along its course, and the morphological border is not straightforward. In the beginning, GIS morphometric methods have been applied to assess the influence of the fault on the present relief. Thereafter, structural measurements of joint systems were undertaken together with the analyses of linear structures within the relief. Finally, resistivity profiling at multiple sites across its estimated course has helped to localise the exact position of the fault. Altogether, fifteen profiles were measured using pole-dipole and dipole–dipole electrode configurations. To obtain more detailed results, the resistivity profiling was supplemented by electrical resistivity tomography on three profiles. The paper brings two main results. Firstly, the combination of morphostructural and geophysical methods brings information that each separately cannot, particularly when the faults have no outcrops. Secondly, it was found that the studied fault stretches along the whole study area. Moreover, indicators point to its possible continuation towards the south-east.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Apparao A, Roy A (1972) Field results for direct-current resistivity profiling with two-electrode array. Geoexploration 11:21–44

    Article  Google Scholar 

  • Babůrek J (2001) Geological map of CR 1: 25 000, sheet 22–332 Kašperské Hory. Czech Geological Survey, Prague

  • Babůrek J et al (2006) Geologie Šumavy. Šumava National Park Authority, Vimperk

  • Balatka B, Kalvoda J (2006) Geomorfologické členění reliéfu Čech. Kartografia a.s., Praha, 79s

  • Batík P, Kotková J (1998) Geological map of CR 1:50 000, sheet 22-34 Vimperk. Czech Geological Survey, Prague

  • Bayrak M, Şenel L (2012) Two-dimensional resistivity imaging in the Kestelek boron area by VLF and DC resistivity methods. J Appl Geophys 82:1–10

    Article  Google Scholar 

  • Beneš K, Holubec J, Surňaková R, Zeman J (1983) Geologická stavba šumavského moldanubika. Academia, Prague, 62 str

  • Bíl M (2003) Využití geomorfometrických technik při studiu neotektoniky. PhD thesis, PřF MU, Brno, Czech Republic

  • Brandmayr M, Dallmeyer RD, Handler R, Wallbrecher E (1995) Conjugate shear zones in the Southern Bohemian Massif (Austria): implications for Variscan and Alpine tectonothermal activity. Tectonophysics 248:97–116

    Article  Google Scholar 

  • Burger HR (1992) Exploration geophysics of the shallow subsurface. Prentice Hall PTR, New Jersey

  • Buzek L (1979) Metody v geomorfologii. Pedagogical faculty, University of Ostrava, Ostrava

  • Caputo R (1991) A comparison between joints and faults as brittle structures used for evaluating the stress field. Ann Tectonicae 5:74–84

    Google Scholar 

  • Chábera S (1985) Jihočeská vlastivěda—neživá příroda. Jihočeské nakladatelství, České Budějovice

    Google Scholar 

  • Conyers BL, Goodman D (1997) Ground-penetrating radar: an introduction for archaeologists. AltaMira press, Walnut Creek

    Google Scholar 

  • Cosenza P, Marmet E, Rejiba F, Cui YJ, Tabbagh A, Charlery Y (2006) Correlations between geotechnical and electrical data: a case study at Garchy in France. J Appl Geophys 60:165–178

    Article  Google Scholar 

  • Demanet D, Renardy F, Vanneste K, Jongmans D, Camelbeeck T, Meghraoui M (2001) The use of geophysical prospecting for imaging active faults in the Roer Graben, Belgium. Geophysics 66(1):78–89

    Article  Google Scholar 

  • Demek J et al (1965) Geomorfologie Českých zemí. Nakladatelství ČSAV, Prague

    Google Scholar 

  • Edwards LS (1977) A modified pseudosection for resistivity and IP. Geophysics 42:1020–1046

    Article  Google Scholar 

  • Engesfield T, Šumanovac F, Krstić V (2011) Classification of near-surface anomalies in the seismic refraction method according to the shape of the time–distance graph: a theoretical approach. J Appl Geophys 74:59–68

    Article  Google Scholar 

  • Fiala J (1988) The tectonic evolution of the Moldanubian Zone in the Kašperské Hory ore district. Acta Univ Carol Geol 4:427–436

    Google Scholar 

  • Fiala J (1995) General characteristics of the Moldanubian Zone. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-permian geology of central and eastern Europe. Springer, Berlin, pp 417–419

    Google Scholar 

  • Frank W (1994) Geochronology and evolution of the South Bohemian Massif. Mitt O Miner Ges 139:41–43

    Google Scholar 

  • Fröhlich RK (1964) Geoelectrical measurements on a fault in the tertiary basin of Mainz (Germany), using the four point method. Geoexploration 2:175–184

    Article  Google Scholar 

  • Ganas A, Pavlides S, Karastathis V (2005) DEM-based morphometry of range-front escarpments in Attica, central Greece, and its relation to fault slip rates. Geomorphology 65:301–319

    Article  Google Scholar 

  • Garcia-Tortosa FJ, Alfaro P, Galindo-Zaldivar J, Gilbert L, Lopez-Garrido AC, de Galdeano CS, Urena M (2008) Geomorphologic evidence of the active Baza Fault (Betic Cordillera, South Spain). Geomorphology 97:374–391

    Article  Google Scholar 

  • Gürer A, Bayrak M, Gürer ÖF (2009) A VLF survey using current gathering phenomena for tracing buried faults of Fethiye–Burdur Fault Zone, Turkey. J Appl Geophys 68(3):437–447

    Article  Google Scholar 

  • Hancock PL (1985) Brittle microtectonics: principles and practice. J Struct Geol 3–4:437–457

    Article  Google Scholar 

  • Hartvich F (1999) Analýza podélných profilů vybraných toků na Šumavě. Bachelor Thesis, Department of physical geography and geoecology, Faculty of science, Charles University in Prague

  • Hartvich F (2003) Reliéf okolí Pošumavského zlomu. In: Kalvoda J, Engel Z (eds) Sborník semináře VCDZ 2003. Faculty of science, Charles University in Prague, pp 12–15

  • Hartvich F (2005) Research of geodynamic activity in the vicinity of Obří Hrad, Šumava Mts. Acta Geodyn Geomater 1(137):29–35

    Google Scholar 

  • Hartvich F (2006) Morfometrické techniky s využitím izobazit na příkladu reliéfu střední Šumavy. In: Smolová I (ed) Geomorfologické výzkumy v roce 2006. Vydavatelstvi UP v Olomouci, Olomouc, pp 43–48

  • Hartvich F, Mentlík P (2010) Slope development reconstruction at two sites in the Bohemian Forest Mountains. Earth Surf Process Landf 35:373–389

    Google Scholar 

  • Hartvich F, Valenta J (2011) The identification of faults using morphostructural and geophysical methods: a case study from Strašín cave site. Acta Geodyn Geomater 8(164):425–441

    Google Scholar 

  • Hawley PF (1943) Fault location by electrical prospecting: an example. Geophysics 8:391–403

    Article  Google Scholar 

  • Hayakawa YS, Oguchi T (2009) GIS analysis of fluvial knickzone distribution in Japanese mountain watersheds. Geomorphology 111:27–37

    Article  Google Scholar 

  • Housarová M (2007) Preliminary outcomes of the geomorphological research in the vicinity of the northwest part of the Pošumavský fault. Silva Gabreta 13(3):225–236

    Google Scholar 

  • IGP—Institute of Geophysics, Czech Academy of Sciences (2012) Catalogue of regional earthquakes. Retrieved from http://www.ig.cas.cz/cz/seismickasluzba/katalogy-regionalnich-zemetreseni/,11.2.2012)

  • Ivan A (1984) Topografické projevy zlomů a puklin v reliéfu Českého masívu. Stud Geogr 87:55–58

    Google Scholar 

  • Ivan A (1999) Geomorphological aspects of late saxonian epiplatform orogeny of the Bohemian massif (part 1). Moravian geographical reports 1/1999, vol 7, pp 18–33

  • Jenček V, Vajner V (1968) Stratigraphy and relations of the groups in the Bohemian part of the Moldanubicum. Krystalinikum 6:105–124

    Google Scholar 

  • Jiříček R (1991) Hypotetické představy o stavbě moldanubika a bohemika. Zemní plyn a nafta 36:131–142

    Google Scholar 

  • Kalt A, Berger A, Blümel P (1999) Metamorphic evolution of cordierite-bearing migmatites from the Bayerische Wald (Variscan belt, Germany). J Petrol 40:601–627

    Article  Google Scholar 

  • Kim KY, Kim DH, Lee SY (2004) P- and S-Wave refraction studies in the yangsan fault zone of Korea. SAGEEP 17:1426–1434

    Google Scholar 

  • Kodym O Jr et al. (1961) Vysvětlivky k přehledné geologické mapě ČSSR 1: 200 000—list Strakonice. Geofond, Nakladatelství ČSAV, Prague

  • Kuria ZN, Woldai T, van der Meer FD, Barongo JO (2009) Active fault segments as potential earthquake sources: inferences from integrated geophysical mapping of the Magadi fault system, southern Kenya Rift. J Afr Earth Sci 57:345–359

    Google Scholar 

  • Kunský J, Louček, D, Sládek J (1963) Praktika fysického zeměpisu. Nakl. ČSAV, Praha, p 266

  • Lysenko V (2004) Morfotectonic analysis of the Šumava National Park using radar satellite images. In: Proceedings of the Conference “Aktuality šumavského výzkumu”, Srní, pp 16–21

  • Maheľ M, Malkovský M (1984) The legend to the tectonical map of the Czechoslovakia. Geological institute of Dionýz Štúr, Bratislava

    Google Scholar 

  • Mareš S, Tvrdý M (1984) Introduction to applied geophysics. Kluwer, Dordrecht

    Google Scholar 

  • Mašek P, Votýpka J (1999) Geomorphological development of the lower part of the Vydra River basin. AUC Geogr XXXIV 2:101–132 (Prague)

    Google Scholar 

  • Mattern F (2001) Permo-Silesian movements between Baltica and Western Europe: tectonics and “basin families”. Terra Nova 13(5):368–375

    Article  Google Scholar 

  • McCalpin JP (2009) Paleoseismology. Int Geophys 95:1–106

    Article  Google Scholar 

  • McClymont AF, Green AG, Kaiser A, Horstmeyer H, Langridge R (2010) Shallow fault segmentation of the Alpine fault zone, New Zealand revealed from 2- and 3-D GPR surveying. J Appl Geophys 70:343–354

    Article  Google Scholar 

  • Miksa V (1991) Strukturně geologická stavba území listu mapy 1: 50 000 Sušice. Zprávy o geologických výzkumech v roce 1990:117–118

    Google Scholar 

  • Minár J (2009) Personal communication

  • Mirabella F, Ciaccio MG, Barchi MR, Merlini S (2004) The Gubbio normal fault (Central Italy): geometry, displacement distribution and tectonic evolution. J Struct Geol 26:2233–2249

    Article  Google Scholar 

  • Mollema PN, Antonellini M (1998) Development of strike-slip faults in the dolomites of the Sella Group, Northern Italy. J Struct Geol 21:273–292

    Article  Google Scholar 

  • Moschelesová J (1930) Vlnité prohyby o velké amplitudě v jižních Čechách. Sborník ČSZ 36(1930):155–158

    Google Scholar 

  • Müller V (ed) (1991) Vysvětlivky k souboru geologických a účelových map 1: 50 000, list 22–33 Kašperské Hory a 32–11 Kvilda. ČGÚ, Prague

    Google Scholar 

  • Nguyen F, Garambois S, Jongmans D, Pirard E, Loke MH (2005) Image processing of 2D resistivity data for imaging faults. J Appl Geophys 57:260–277

    Article  Google Scholar 

  • Očadlík T (1989) Vymapování zvodnělých struktur v údolní nivě Zlatého potoka na lokalitě Kašperské Hory RMV při použití geoelektrických metod měření. MS Geofond, Prague

    Google Scholar 

  • Oguchi T, Aoki T, Matsuta N (2003) Identification of an active fault in the Japanese Alps from DEM-based hill shading. Comput Geosci 29(7):885–891

    Article  Google Scholar 

  • Oldenburg DW, Li Y (1999) Estimating depth of investigation in dc resistivity and IP surveys. Geophys 64(2):403–416

    Google Scholar 

  • Ortuno M, Queralt P, Marti A, Ledo J, Masana E, Perea H, Santanach P (2008) The North Maladeta Fault (Spanish Central Pyrenees) as the Vielha 1923 earthquake seismic source: recent activity revealed by geomorphological and geophysical research. Tectonophysics 453:246–262

    Article  Google Scholar 

  • Peacock DCP (2001) The temporal relationship between joints and faults. J Struct Geol 23:329–341

    Article  Google Scholar 

  • Pelc Z (1991) Geologická mapa ČR 1:50 000, sheet 32-11 Kvilda. Czech Geological Survey, Prague

  • Pelc Z, Šebesta J (1994) Geological map of CR 1:50 000, sheet 22-33 Kašperské Hory. Czech geological survey, Prague

  • Pelc Z, Šebesta J, Slabý J, Štědrá V (1996) Geological map of CR 1:50 000, sheet 32-12 Volary. Czech Geological Survey, Prague

  • Pelc Z, Miksa V, Šebesta J (2002) Geological map of CR 1:50 000, sheet 22-31 Sušice. Czech Geological Survey, Prague

  • Pícha M, Hudečková E (1997) Magnetotelluric sounding along the 9HR seismic profile. In: Vrána S, Štědrá V (eds) Geological model of Western Bohemia related to the KTB borehole in Germany, vol 47. J Geol Sci, pp 24–50

  • Reynolds JM (1997) An introduction to applied and environmental geophysics. Wiley, New Jersey

    Google Scholar 

  • Schrott L, Sass O (2008) Application of field geophysics in geomorphology: advances and limitations exemplified by case studies. Geomorphology 93(1–2):55–73

    Article  Google Scholar 

  • Sheriff RE, Geldart LP (1995) Exploration seismology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Siebel W, Chen F, Blaha U, Rohrmüller J, Shang C (2004) Timing of mylonitization along the Bavarian Pfahl zone, Bohemian Massif: implications from U–Pb and Pb–Pb radiometric ages. Geochim Cosmochim Acta 68:A546

    Google Scholar 

  • Siebel W, Hann, H, Danišík, M, Shang, C, Berthold, C,Rohrmüller J, Wemmer, K, Evans, NJ (2010) Age constraints on faulting and fault reactivation: a multi-chronological approach. Int J Earth Sci (Geol Rundsch) 99(6):1187–1197

  • Stemberk J, Hartvich F (2011) Fault slips recorded in the Strašín Cave (SW Bohemian Massif). Acta Geodyn Geomater 8(164):413–423. http://www.irsm.cas.cz/?Lang=CZE&Menu=25,29,0,0;&File=Obsah/AGG/Contents/AGGC8_4(164)11.htm

    Google Scholar 

  • Štěpančíková P (2007) Morfostrukturní vývoj severovýchodní části Rychlebských hor. MS, Faculty of Science, Charles University in Prague

  • Surňaková R, Zeman J (1982) Morfostruktury a morfostrukturní členění šumavského moldanubika. In: Prosser V (ed) Geomorfologická konference. Charles University, Prague, pp 169–177

    Google Scholar 

  • Szynkaruk E, Graduño-Monroy VH, Bocco G (2003) Active fault systems and tectono-topographic configuration of the central Trans-Mexican Volcanic Belt. Geomorphology 61:111–126

    Article  Google Scholar 

  • Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics, 2nd edn. Cambridge University Press, UK

    Book  Google Scholar 

  • Urban M, Synek J (1995) VII. C2 Moldanubian Zone. Structure. In: Dallmeyer D, Franke W, Weber K (eds) Pre-permian geology of the central and western Europe. Springer, Berlin, pp 429–443

    Google Scholar 

  • Valenta J, Stejskal V, Štěpančíková P (2008) Tectonic pattern of the Hronov-Poříčí Trough as seen from pole-dipole geoelectrical measurements. Acta Geodyn Geomater 5(2):185–195

    Google Scholar 

  • Vejnar Z (1991a) Geological map of CR 1:50 000, sheet 21-44 Železná Ruda. Czech Geological Survey, Prague

  • Vejnar Z (1991b) The metamorphic zonal pattern in the Moldanubicum of the NW part of the Šumava Mts., Královský hvozd unit. Věst Ústř Úst Geol 66:129–140

    Google Scholar 

  • Vejnar Z, Miksa V (1988) Geological map of CR 1:50 000, sheet 21-42 Nýrsko. Czech geological survey, Prague

  • Verma RK, Bhuin NC, Rao CV (1979) Use of electrical resistivity methods for study of some faults in the Jharia coalfield, India. Geoexploration 18:201–220

    Article  Google Scholar 

  • Vrána S, Blümel P, Petrakakis K (1995) Moldanubian Zone: metamorphic evolution. In: Dallmeyer D, Franke W, Weber K (eds) Pre-permian geology of the central and western Europe. Springer, Berlin, pp 453–466

    Google Scholar 

  • Vyskočil P, Kopecký A (1974) Neotectonics and recent crustal movements in the Bohemian massif. VÚGTK, Prague

    Google Scholar 

  • Vysotsky EM, Vishnevskaya EA, Elobogoev AV (2002) Neotectonic analysis of northern Lake Teletskoe using digital elevation modeling. Russ Geol Geophys 43:1050–1099

    Google Scholar 

  • Wechsler N, Rockwell TK, Ben-Zion Y (2009) Application of high resolution DEM data to detect rock damage from geomorphic signals along the central San Jacinto Fault. Geomorphology 113:82–96

    Article  Google Scholar 

  • Wise DJ, Cassidy J, Locke CA (2003) Geophysical imaging of the Quaternary Wairoa North Fault, New Zealand: a case study. J Appl Geophys 53:1–16

    Article  Google Scholar 

  • Woldřich JN (1905) Geologie se zvláštním zřetelem na Země Koruny České. Dr. František Bačkovský publishing, Prague

    Google Scholar 

  • Yang CH, Cheng PH, You JI, Tsai LL (2002) Significant resistivity changes in the fault zone associated with the 1999 Chi–Chi earthquake, west-central Taiwan. Tectonophysics 350:299–313

    Article  Google Scholar 

  • Žáček J (2006) Geological map 1: 25 000, sheet 22-334 Kvilda. MS, Czech Geological Survey, Prague

  • Záleský J et al (1983) Zpráva č. 15/83 o inženýrskogeologickém průzkumu Dobrá Voda—Vysoké Lávky. MS Geofond, Prague

  • Zedník J, Pazdírková J (2010) Seismic activity in the Czech Republic in 2008. Stud Geophys Geod 54:333–338

    Article  Google Scholar 

  • Zeman J (1984) Hlavní zlomy českého Moldanubika. Studia Geogr 87(1984):53–54

    Google Scholar 

  • Zemanová A (2005) Morphostructural analysis of the Hamerský Brook catchment. Misc Geogr 11:65–74

    Google Scholar 

  • Ziegler PA, Dèzes P (2007) Cenozoic uplift of Variscan Massifs in the Alpine foreland: timing and controlling mechanisms Volume 58. Global Planet Change 58(1–4):237–269

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support of the Institutional research plan (No. AVOZ30460519) and of the project CzechGeo/EPOS (proj. No. LM2010008). Also, the authors would like to thank Dr. Matthew D. Rowberry for the language correction and proof-reading of the paper and to Dr. Miloš René for advices concerning the geological development background and petrology of Bohemian Forest. Finally, the authors express their thanks to the colleagues and students, who helped with numerous and often difficult field measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Hartvich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartvich, F., Valenta, J. Tracing an Intra-montane Fault: An Interdisciplinary Approach. Surv Geophys 34, 317–347 (2013). https://doi.org/10.1007/s10712-012-9216-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-012-9216-9

Keywords

Navigation