Skip to main content

Advertisement

Log in

Ophiolite Tectonics, Rock Magnetism and Palaeomagnetism, Cyprus

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Magnetic properties of minerals may be sensitive indicators of provenance. Remanence-bearing minerals (RBM) such as iron–titanium oxides, and matrix-forming minerals such as paramagnetic phyllosilicate or diamagnetic calcite yield different clues to provenance, strain history and tectonics, and are essential supplements for the full interpretation of palaeomagnetic data. Moreover, mineral magnetic properties provide magnetic-petrofabric indicators of tectonic strain, determine the suitability of sites for palaeomagnetism, and permit the restoration of palaeomagnetic vectors in some strained rocks. In the Cretaceous Troodos ophiolite (~88 Ma) magnetic properties are dictated by the relative importance of mafic silicates and largely primary, ophiolite-derived RBM. In its cover of deformed pelagic sedimentary rock, magnetic properties are dictated by the balance of clastic RBM versus matrix calcite and in some cases clay. The two larger Cretaceous ophiolite outcrops (Troodos & Akamas) share a common orientation of their plutonic flow fabrics, determined by magnetic methods. The dike complex shows fabrics indicating plume-like feeders spaced along and perpendicular to the spreading axis, with longevities >0.5 Ma. South of the ophiolite, its Cretaceous-Miocene limestone cover possesses ubiquitous tectonic petrofabrics inferred from anisotropy of magnetic susceptibility (AMS) and anisotropy of anhysteretic remanent susceptibility (AARM). Its foliation and maximum extension dip and plunge gently northward, sub-parallel to a common but previously unreported North-dipping stylolitic cleavage. In well-known localized areas, there are S-vergent thrusts and overturned folds. The S-vergent deformation fabrics are due to Late Miocene (pre-Messinian ~8 Ma) deformation. The structures are geometrically consistent with overthrusting of the Cretaceous Troodos-Akamas ophiolite, and its sedimentary cover, onto the underlying Triassic Mamonia terrane. The northern limit of pre-Messinian tectonic fabrics, the Troodos-Mamonia terrane boundary and the Arakapas-Transform fault form an approximate E–W composite boundary that we term the Troodos Tectonic Front. Miocene deformation remagnetized the ophiolite and its sedimentary cover in many places and also affects the Mamonia terrane to the SW, with which the Troodos terrane docked in the late Cretaceous. Magnetic mineralogy, particularly of the RBM traces the progressive un-roofing of the ophiolite during the deposition of its sedimentary cover. During the submarine exposure and erosion of the ophiolite, the contribution of RBM clasts to the overlying sedimentary cover changed qualitatively and quantitatively. Thus, magnetic mineralogy of the sedimentary rock cover records the progressive denudation of the ophiolite from lavas, down through dikes, to gabbros and deeper mantle rocks. Palaeomagnetic studies previously revealed the anticlockwise rotation of the Troodos terrane and its northwards migration. Characteristic remanent magnetism (ChRM) is most reliable for lavas and dikes although it is usually carried by recrystallized RBM. These correspond to the age of greenschist facies ocean-floor metamorphism, perhaps 7–15 Ma after igneous crystallization with an extent and depth dependent on depth and degree of hydrothermal circulation. The gabbros and mantle rocks commonly bear young (<12 Ma) remanences probably acquired (or re-acquired) during uplift of the Troodos terrane. In the cover of pre-Messinian deformed limestone (>8 Ma), the remagnetizing effects of penetrative strain have been under-estimated. Where strain has occurred, un-tilting procedures produce erroneous restorations for the remanence vectors, and thus for the associated paleopoles. We find that de-straining of limestone sites most appropriately restores ChRM vectors to their original orientation. The best-determined and restored ChRMs define an apparent polar wander path (APWP). Since the APWP terminates at the present N-pole, we inverted it to determine the true plate-motion of the Troodos-terrane. Thus, in present-day coordinates, Troodos rocks moved ~1,000 km South; then ~4,500 km East and finally ~900 km North at an approximate rate of 75 km/Ma [1 km/Ma = 1 mm/a]. This true motion path commenced ~88 Ma ago and rates of motion since 65 Ma may be too high due to the limited precision of strain-corrections of the ChRM orientations in limestone. This true motion path is compatible with the eastward and then northward rotation of Africa relative to Europe although other workers show relative motion paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  • Abrahamsen N, Schönhartig G (1987) Palaeomagnetic timing of rotation and translation of Cyprus. Earth Planet Sci Lett 81:409–418

    Google Scholar 

  • Acton GD, Gordon RG (1991) A 65 Ma palaeomagnetic pole for the Pacific Plate from the skewness of magnetic anomalies 27r-31. Geophys J Int 106:407

    Google Scholar 

  • Allerton S, Vine FJ (1987) Spreading structure of the Troodos Ophiolite. Cyprus: some palaeomagnetic constraints. Geology 15:593–597

    Google Scholar 

  • Allerton S, Vine FJ (1990) Palaeomagnetic and structural studies in the Troodos complex. In: Malpas J et al (eds) Troodos 1987: ocean crustal analogues. Geological Survey Department, Nicosia, Cyprus, pp 99–111

    Google Scholar 

  • Arkani-Hamed J (1988) Remanent magnetization of oceanic upper mantle. Geophys Res Lett 15:48–51

    Google Scholar 

  • Arkani-Hamed J, Strangway DW (1986) Effective magnetic susceptibility of the oceanic mantle derived from MAGSAT data. Geophys Res Lett 15:48–51

    Google Scholar 

  • Bailey WR, Holdsworth RE, Swarbrick RE (2000) Kinematic history of a reactivated oceanic suture: the Mamonia complex suture zone, SW Cyprus. J Geol Soc Lond 157:1107–1126

    Article  Google Scholar 

  • Banerjee SK (1980) Magnetism of the ocean crust: evidence from ophiolite complexes. J Geophys Res 85:3557–3566

    Google Scholar 

  • Beske-Diehl S, Banerjee SK (1980) Metamorphism in the Troodos ophiolite: implications for marine magnetic anomalies. Nature 285:563–564. doi:10.1038/285563

    Google Scholar 

  • Besse J, Courtillot V (2002) Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr. J Geophys Res Solid Earth 107:31

    Google Scholar 

  • Bina MM, Henry B (1990) Magnetic properties opaque mineralogy and magnetic anisotropies of serpentinized peridotites from ODP hole 670A, near the Mind-Atlantic Ridge. Phys Earth Planet Inter 65:88–103

    Google Scholar 

  • Blakely RJ (1976) An age-dependent, two-layer model for marine magnetic anomalies. In: Sutton GH et al (eds) The geophysics of the Pacific Ocean Basin and its margin. Geophysical monograph #19, American Geophysical Union, pp 227–234

  • Blome CD, Irwin WP (1985) Equivalent radiolarian ages from ophiolitic terranes of Cyprus and Oman. Geology 13(6):401–404

    Google Scholar 

  • Blow WH (1969) Late middle eocene to recent planktonic foraminiferal biostratigraphy. In: Proceedings of the first international conference on planktonic microfossils. Geneva, Brill, Leiden, pp 199–421

  • Bonhommet N, Roperch P, Calza F (1988) Palaeomagnetic arguments for block rotations along the Arakapas fault (Cyprus). Geology 16:422–425

    Google Scholar 

  • Borradaile GJ (1988) Magnetic susceptibility, petrofabrics and strain. Tectonophysics 156:1–20

    Google Scholar 

  • Borradaile GJ (1991) Remanent magnetism and ductile deformation in an experimentally deformed magnetite—bearing limestone. Phys Earth Planet Inter 67:362–373

    Google Scholar 

  • Borradaile GJ (1992a) Deformation of remanent magnetism in a synthetic aggregate with hematite. Tectonophysics 206:203–218

    Google Scholar 

  • Borradaile GJ (1992b) Experimental deformation of two—component IRM in magnetite—bearing limestone: a model for the behaviour of NRM during natural deformation. Phys Earth Planet Inter 70:64–77

    Google Scholar 

  • Borradaile GJ (1993a) Strain and magnetic remanence. J Struct Geol 15:383–390

    Google Scholar 

  • Borradaile GJ (1993b) The rotation of magnetic grains. Tectonophysics 221:381–384

    Google Scholar 

  • Borradaile GJ (1996) Experimental stress remagnetization of magnetite. Tectonophysics 261:229–248

    Google Scholar 

  • Borradaile GJ (1997) Deformation and palaeomagnetism. Surv Geophys 18:405–435

    Google Scholar 

  • Borradaile GJ (2001a) Magnetic fabrics and petrofabrics: their orientation distributions and anisotropies. J Struct Geol 23:1581–1596

    Google Scholar 

  • Borradaile GJ (2001b) Palaeomagnetic vectors and tilted dikes. Tectonophysics 333:417–426

    Google Scholar 

  • Borradaile GJ, Gauthier D (2001) AMS-detection of inverse fabrics without AARM, in ophiolite dikes. Geophys Res Lett 28:3517–3520

    Google Scholar 

  • Borradaile GJ, Gauthier D (2003) Interpreting anomalous magnetic fabrics in ophiolite dikes. J Struct Geol 25:171–182

    Google Scholar 

  • Borradaile GJ, Gauthier D (2006) Magnetic studies of magma-supply and sea-floor metamorphism: Troodos ophiolite dikes. Tectonophysics 418:75–92

    Google Scholar 

  • Borradaile GJ, Geneviciene I (2007) Measuring heterogeneous remanence in palaeomagnetism. Geophys Res Lett 34:L12303. doi:10.1029/2007GL029934

    Google Scholar 

  • Borradaile GJ, Hamilton T (2003) Limestones distinguished by magnetic hysteresis in three-dimensional projections. Geophys Res Lett 30(18):1973. doi:10.1029/2003GL017892

  • Borradaile GJ, Hamilton TD (2004) Magnetic fabrics may proxy as neotectonic stress trajectories, Polis Rift, Cyprus. Tectonics 23:TC1001. doi:10.1029/2002TC001434

    Google Scholar 

  • Borradaile GJ, Hamilton TD (2009) Re-computing palaeopoles for the effects of tectonic finite strain. Tectonophysics 467:131–144. doi:10.1016/j.tecto.2008.12.020

    Google Scholar 

  • Borradaile GJ, Henry B (1997) Tectonic applications of magnetic susceptibility and its anisotropy. Earth Sci Rev 42:49–93

    Google Scholar 

  • Borradaile GJ, Jackson M (1993) Changes in magnetic remanence during simulated deep sedimentary burial. Phys Earth Planet Int 77:315–327

    Google Scholar 

  • Borradaile GJ, Jackson M (2004) Anisotropy of magnetic susceptibility (AMS): magnetic petrofabrics of deformed rocks. In: Martin-Hernandez F, Lünenburg CM, Aubourg C, Jackson M (eds) Magnetic fabric: methods and applications, vol 238. Geological Society London, pp 299–360 (special publication)

  • Borradaile GJ, Jackson M (2009) Structural geology, petrofabrics and magnetic fabrics (AMS, AARM, AIRM). J Struct Geol (in press)

  • Borradaile GJ, Lagroix F (2000) Magnetic characterization of limestone using a new hysteresis projection. Geophys J Int 141:213–226

    Google Scholar 

  • Borradaile GJ, Lagroix F (2001) Magnetic fabrics reveal Upper Mantle flow fabrics in the Troodos ophiolite complex, Cyprus. J Struct Geol 23:1299–1317

    Google Scholar 

  • Borradaile GJ, Lucas K (2003) Tectonics of the Akamas and Mamonia ophiolites, Western Cyprus: magnetic petrofabrics and palaeomagnetism. J Struct Geol 25:2053–2076

    Google Scholar 

  • Borradaile GJ, Mothersill JS (1991) Experimental strain of isothermal remanent magnetisation in ductile sandstone. Phys Earth Planet Inter 65:308–318

    Google Scholar 

  • Borradaile GJ, Stupavsky M (1995) Anisotropy of magnetic susceptibility: measurement schemes. Geophys Res Lett 22:1957–1960

    Google Scholar 

  • Borradaile GJ, Bayly MB, Powell CMA (1982) Atlas of deformational and metamorphic rock fabrics. Springer, Berlin, 551 pp

    Google Scholar 

  • Borradaile GJ, Chow N, Werner T (1993) Magnetic hysteresis of limestone: facies control? Phys Earth Planet Inter 76:241–252

    Google Scholar 

  • Borradaile GJ, Almqvist BS, Lucas K (2006) Specimen size and improved precision with the Molspin spinner magnetometer. Earth Planet Sci Lett 241:381–386

    Google Scholar 

  • Cande SC, Kent DV (1992) A new geomagnetic polarity time scale for the late Cretaceous and Cenozoic. J Geophys Res 97:13917–13951

    Google Scholar 

  • Cande SC, Kent DV (1995) Revised calibration of the geomagnetic polarity timescale for the late Cretaceous and Cenozoic. J Geophys Res 100:6093–6095

    Google Scholar 

  • Channell JET, McCabe C (1994) Comparison of magnetic hysteresis parameters of unremagnetized and remagnetized limestones. J Geophys Res 99:4613–4623

    Google Scholar 

  • Christie DM, Carmichael ISE, Langmuir CH (1986) Oxidation states of mid-ocean ridge basalt glasses. Earth Planet Sci Lett 79:397–413

    Google Scholar 

  • Clube TMM, Robertson AHF (1986) The palaeorotation of the Troodos microplate, Cyprus, in the Late Mesozoic—early Cenozoic plate tectonic framework of the Eastern Mediterranean. Surv Geophys 8:375–437

    Google Scholar 

  • Day R, Fuller MD, Schmidt VA (1977) Hysteresis properties of titanomagnetites: grain size and compositional dependence. Phys Earth Planet Inter 13:260–267

    Google Scholar 

  • Delaloye M, Desmet A (1979) Nouvelles données radiométriques sur les pillow-lavas du Troodos (Chypre): academie des Sciences, Paris. C. R. Ser D 288:461–464

    Google Scholar 

  • Delaloye M, Desmet A, Desmons J, Gagny CI, Rocci G (1980a) Geochronological interpretation of the Troodos sheeted dike complex. Ofioliti 5:27–34

    Google Scholar 

  • Delaloye M, De Suza H, Wagner JJ, Hedley I (1980b) Isotopic ages on ophiolites from the eastern Mediterranean. In: Panayatiou A et al (eds) Ophiolites: proceedings of the international ophiolite conference, Cyprus. Cyprus Geological Survey Department, pp 292–295

  • Desmet A, LaPierre H, Rocci G, Gagny C, Parrot JF, Delaloye M (1978) Constitution and significance of the Troodos sheeted dike complex. Nature 273:527–530

    Google Scholar 

  • Dilek Y, Thy P, Moores EM, Ramsden TW (1990) Tectonic evolution of the Troodos ophiolite within the Tethyan framework. Tectonics 9:811–823

    Google Scholar 

  • Dixon JE, Robertson AHF (1984) The geological evolution of the eastern Mediterranean, vol 17. Geological Society of London, Special Publication , 824 pp

  • Dunlop DJ (1979) On the use of Zijderveld diagrams in multi-component paleomagnetic studies. Phys Earth Planet Inter 20:12–24

    Google Scholar 

  • Dunlop DJ (2002a) Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1 theoretical curves and tests using titanomagnetite data. J Geophys Res 107:2057. doi:10.1029/2001JB000487

    Google Scholar 

  • Dunlop DJ (2002b) Theory and application of the day plot (Mrs/Ms versus Hcr/Hc) 2 application to rocks, sediments and soils. J Geophys Res 107(B3):2057. doi:10.1029/2001JB000487

    Google Scholar 

  • Dunlop D, Özdemir Ö (1997) Rock magnetism: fundamentals and frontiers. University Press, Cambridge, 573 pp

    Google Scholar 

  • Dyment J, Arkani-Hamed J (1995) Spreading rate dependent magnetization of the oceanic lithosphere inferred from the anomalous skewness of marine magnetic anomalies. J Geophys Res 121:789–804

    Google Scholar 

  • Dyment J, Arkani-Hamed J (1998) Contribution of lithospheric remanent magnetization to satellite magnetic anomalies over the world’s oceans. J Geophys Res 103:15423–15441

    Google Scholar 

  • Dyment J, Arkani-Hamed J, Ghods A (1997) Contribution of serpentinized ultramafics to marine magnetic anomalies at slow and intermediate spreading centres: insights from the shape of the anomalies. Geophys J Int 129:691–701

    Google Scholar 

  • Ealy PJ, Knox GJ (1975) The pre-Tertiary rocks of SW Cyprus. Contrib Mineral Petrol 89:239–255

    Google Scholar 

  • Eaton S, Robertson A (1993) The Miocene Pakhna Formation, southern Cyprus and its relationship to the Neogene tectonic evolution of the Eastern Mediterranean. Sediment Geol 86:273–296

    Google Scholar 

  • Everitt CWF, Clegg JA (1962) A field test of palaeomagnetism stability. Geophys J R Astron Soc 6:312–319

    Google Scholar 

  • Flinn D (1962) On folding during three-dimensional progressive deformation. Q J Geol Soc 118:385–428

    Google Scholar 

  • Follows EJ, Robertson AHF (1990) Sedimentology and structural setting of the Miocene reefal limestones in Cyprus. In: Troodos ‘87, Ophiolite and Oceanic Lithosphere. Cyprus Geological Survey Department, pp 207–216

  • Follows EJ, Robertson AHF, Scoffin TP (1996) Tectonic controls on reef and related carbonate facies in Cyprus. In: Concepts in sedimentology and palaeontology No. 5. Society for Sedimentary & Petroleum Geologists, pp 295–315

  • Freeman R (1986) Magnetic mineralogy of pelagic limestones. Geophys J R Astron Soc 85:433–452

    Google Scholar 

  • Fullerton IG, Frey FG, Roark JH, Thomas HH (1989) Evidence for a lithospheric remanent magnetization magnetization contribution in MAGSAT data from the Cretaceous Quiet Zone in the South Atlantic. Geophys Res Lett 103:15423–15441

    Google Scholar 

  • Gallahan WE, Duncan RA (1991) K-Ar ages of celadonites from the Troodos ophiolite, Cyprus: a new estimate for the duration of hydrothermal alteration in oceanic crust. EOS 72:453

    Google Scholar 

  • Gass I (1968) Is the Troodos Massif of Cyprus a fragment of Mesozoic ocean floor? Nature 220:39–42

    Google Scholar 

  • Gass IG (1990) Ophiolites and oceanic lithosphere. In: Malpas J, Moores E, Panayiotou A, Xenophontos C (eds) Troodos 1987: ocean crustal analogues. Cyprus Geological Survey Department Nicosia, Cyprus, pp 1–10

    Google Scholar 

  • Gass IG, Masson-Smith D (1963) The geology and gravity anomalies of the Troodos massif, Cyprus. Philos Trans R Soc Lond A141:417–467

    Google Scholar 

  • Gass I, MacLeod CJ, Murton BJ, Panayiotou A, Simonian KO, Xenophontos C (1994) The geology of the Southern Troodos transform fault zone. Cyprus Geological Survey Department Memoir, No. 9, 218 pp

  • Gee J, Varga R, Gallet Y, Staudigel H (1993) Reversed polarity overprint in dikes from the Troodos ophiolite: implications for the timing of alteration and extension. Geology 21:849–952

    Google Scholar 

  • Gibson IL, Malpas J, Robinson PT, Xenophontos C (1989) Cyprus crustal study project: initial report, hole CY-4. Energy Mines and Resources Canada, Ottawa. Paper 88-9, 393 pp

  • Gibson IL, Malpas J, Robinson PT, Xenophontos C (1991) Cyprus crustal study project: initial report holes CY-1 and CY-1a. Energy Mines and Resources of Canada, Paper 90-20, 283 pp

  • Gillis KM, Roberts MD (1999) Cracking at the magma-hydrothermal transition: evidence from the Troodos Ophiolite, Cyprus. Earth Planet Sci Lett 169:227–244

    Google Scholar 

  • Graham JW (1949) The stability and significance of magnetism in sedimentary rocks. J Geophys Res 54:131–167

    Google Scholar 

  • Grand T, Lapierre H, Mascle GH, Ohnenstetter M, Angelier J (1993) Superimposed tectonics of the Cyprus ophiolitic massifs. Tectonics 12:93–101

    Google Scholar 

  • Hall JM, Fisher B, Walls C, Ward T, Hall L, Johnson HP, Pariso J (1989) Magnetic properties, oxide petrography and alteration in the Cyprus Crystal Study Project Drill Hole CY-4. In: Gibson et al (eds) Cyprus crustal study project initial report, Hole CY-4 Geological Survey of Canada, 88-9, pp 235–314

  • Hall J, Walls C, Hall S (1995) Viscous magnetization at 300 K in a profile through Troodos type oceanic crust. Phys Earth Planet Inter 88:101–116

    Google Scholar 

  • Hall J, Fisher B, Walls C, Hall S, Johnson H, Baker A, Agrawal V, Persaud M, Sumaiang R (1997) The vertical distribution and alteration of dikes in a profile through the Troodos ophiolite. Nature 326:780–782

    Google Scholar 

  • Hamilton TD, Borradaile GJ, Lagroix F (2004) Sub-fabric identification by standardization of AMS: an example of inferred neotectonic structures from Cyprus. In: Martin-Hernandez F, Lünenburg CM, Aubourg C, Jackson M (eds) Magnetic fabric: methods and applications, vol 238. Geological Society London, Special Publication, pp 527–540

  • Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic

  • Henry B (1983) Interprétation quantitative de l’anisotropie de susceptibilité magnétique. Tectonophysics 91:165–177

    Google Scholar 

  • Henshaw PC, Merrill RT (1980) Magnetic and chemical changes in marine sediments. Rev Geophys Space Phys 18:483–504

    Google Scholar 

  • Henson FRS, Browne RV, McGinty J (1949) A synopsis of the stratigraphy and geological history of Cyprus. Q J Geol Soc Lond 105:1–41

    Google Scholar 

  • Hrouda F (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys Surv 5:37–82

    Google Scholar 

  • Hurst SD, Verosub KL, Moores EM (1992) Palaeomagnetic constraints on the formation of the Solea graben, Troodos ophiolite, Cyprus. Tectonophysics 208:431–445

    Google Scholar 

  • Ilani S, Rosenfeld A, Flexer A (2000) Manganese within the Maastrichtian to Eocene “Chalk Sea” in Cyprus and Israel—a guide to tectono-volcanic and erosional events. In: Panayides A et al (eds) Proceedings of the third international conference geology of the Eastern Mediterranean, Geological Survey Department, Nicosia, Cyprus, pp 249–253

  • Irwin WP, Murchey BL, Jones DL, Kling SA (1980) Mid-Cretaceous radiolarians in the Perapedhi formation, Cyprus. Ofioliti 5:265

    Google Scholar 

  • Jackson M (1991) Anisotropy of magnetic remanence: a brief review of mineralogical sources, physical origins, and geological applications, and comparison with susceptibility anisotropy. Pure Appl Geophys 136:1–28

    Google Scholar 

  • Jackson M, Borradaile GJ, Hudleston PJ, Banerjee SK (1993) Experimental deformation of synthetic magnetite—bearing calcite sandstones: effects on remanence, bulk magnetic properties, and magnetic anisotropy. J Geophys Res 98:383–401

    Google Scholar 

  • Jelinek V (1981) Characterization of the magnetic fabrics of rocks. Tectonophysics 79:T63–T67

    Google Scholar 

  • Johns MK, Jackson MJ (1991) Compositional control of anisotropy of remanent and induced magnetization in synthetic samples. Geophys Res Lett 18:1293–1296

    Google Scholar 

  • Johnson HP, Pariso J (1993) Variations in oceanic crustal magnetization: systematic changes in the last 160 Ma. J Geophys Res 98:435–445

    Google Scholar 

  • Kähler G, Stow D (1998) Turbidites and cotourites of the Palaeogene Lekara formation, southern Cyprus. Sediment Geol 115:215–231

    Google Scholar 

  • Kelso P, Banerjee S, Wörm H-U (1991) The effect of low-temperature hydrothermal alteration on the remanent magnetization of synthetic magnetite: a case for the acquisition of chemical remanent magnetization. J Geophys Res 96:19545–19553

    Google Scholar 

  • Kempler D, Ben-Avraham Z (1987) The tectonic evolution of the Cyprean Arc. Ann Tecton 1:58–71

    Google Scholar 

  • King JW, Banerjee SK, Marvin JA, Özdemir Ö (1982) A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: some results from lake sediments. Earth Planet Sci Lett 59:404–419

    Google Scholar 

  • Lagroix F, Borradaile GJ (2000a) Tectonics of the circum-Troodos sedimentary cover of Cyprus, from rock magnetic and structural observations. J Struct Geol 22:453–469

    Google Scholar 

  • Lagroix F, Borradaile GJ (2000b) Magnetic fabric interpretation complicated by inclusions in mafic silicates. Tectonophysics 325:207–225

    Google Scholar 

  • LaPierre H, Rocci G (1969) Un bel exemple d’association cogénetique laves-radiolarites-calcaires: la formation Triassique de Petra tou Romiou (Chypre). C R Acad Sci D 268:2637–2640

    Google Scholar 

  • LaPierre H, Angelier J, Cogné X, Grand T, Mascle G (1988) Tectonique superposée de la zone de faille d’Arakapas (Massif de Troodos, Chypre). Geodinamica Acta 2–4:197–206

    Google Scholar 

  • LaPierre H, Bosch D, Narros A, Mascle GH, Tardy M, Demant A (2007) The Mamonia complex revisited: remanent of late Triassic volcanism along the Tethyan southwestern passive margin. Geol Mag 144:1–19

    Google Scholar 

  • Lord AR, Panayides I, Urquhart E, Xenophontos C (2000) A biochronostratigraphical framework for the late cretaceous-recent circum-Troodos sedimentary sequence, Cyprus. In: Panayides I, Xenophontos C, Malpas J (eds) Proceedings of the third international conference on the geology of the eastern Mediterranean. Geological Survey Department, Nicosia, Cyprus, pp 289–297

  • Lowrie W, Heller F (1982) Magnetic properties of marine limestone. Rev Geophys Space Phys 20:171–192

    Google Scholar 

  • MacDonald WD (1980) Net tectonic rotation, apparent tectonic rotation, and the structural tilt correction in palaeomagnetic studies. J Geophys Res 85:3659–3669

    Google Scholar 

  • MacLeod CJ, Murton BJ (1993) Structure and tectonic evolution of the Southern Cyprus transform fault zone. In: Alabaster T et al (eds) Magmatic processes and plate tectonics, vol 76. Geological Society of London, Special Publication, pp 141–176

  • Macleod C, Allerton S, Gass I, Xenophontos C (1990) Structure of a fossil ridge-transform intersection in the Troodos ophiolite. Nature 348:717–720

    Google Scholar 

  • Malpas J, Moores E, Panayiotou A, Xenophontos C (eds) (1990) Troodos 1987: ophiolites: oceanic crustal analogues. Geological Survey Department, Nicosia, 733 pp

  • Mantis M (1970) Upper cretaceous-tertiary foraminiferal zones in Cyprus: epithris 3:227–241

    Google Scholar 

  • Mantis M (1971) Palaeontological dating of the Troodos pillow lava series. Kypriakos Logos 3:202

    Google Scholar 

  • Martini E (1971) Standard tertiary and quaternary calcareous nanoplankton zonation. In: Proceeding 2nd planktonic conference, vol 2. Rome, pp 739–785

  • Matzka J, Krasa D, Kunzmann T, Schult A, Petersen N (2003) Magnetic state of 10–40 Ma old ocean basalts and its implications for natural remanent magnetization. Earth Planet Sci Lett 206:541–553

    Google Scholar 

  • McCallum JE, Robertson AHF (1990) Pulsed uplift of the Troodos Massif—evidence from the Plio-Pleistocene Mesaoria basin. In: Troodos ‘87, ophiolite and oceanic lithosphere. Cyprus Geological Survey Department, pp 217–230

  • McElhinny MW, McFadden PL (2000) Palaeomagnetism: continents and oceans. Academic Press, London, 386 pp

  • Middleton RS, Borradaile GJ, Baker D, Lucas K (2004) Proterozoic diabase sills of northern Ontario: magnetic properties and history. J Geophys Res 109:B02103. doi:10.1029/2003JB002581 (12 pp)

  • Moores E, Vine F (1971) The Troodos Massif, Cyprus, and other ophiolites as ocean crust; evaluation and implications. Philos Trans R Soc Lond A268:433–466

    Google Scholar 

  • Moores EM, Robinson PT, Malpas J, Xenophontos C (1984) A model for the origin of the Troodos Massif, Cyprus and other mid-east ophiolites. Geology 12:500–503

    Google Scholar 

  • Moores EM, Varga RJ, Verosub KL, Ramsden T (1990) Regional structure of the Troodos Dike complex. In: Malpas J, Moores E, Panayiotou A, Xenophontos C (eds) Troodos 1987: oceanic crustal analogues: proceedings of the symposium, Geological Survey Department, Nicosia, pp 53–64

  • Moores EM, Kellogg LH, Dilek Y (2000) Tethyan ophiolites, mantle convection, and tectonic “historical contingency”: a resolution of the “ophiolite conundrum”: ophiolites and oceanic crust: new insights from field studies and ocean drilling program, pp 3–12

  • Morris A (1996) A review of palaeomagnetic research in the Troodos ophiolite, Cyprus. In: Morris A, Tarling, DH (eds) Palaeomagnetics and tectonics of the Mediterranean region. Geological Society of London, special publication no. 105, pp 311–324

  • Morris A, Anderson MW, Robertson AF (1998) Multiple tectonic rotations and transform tectonism in an intra-oceanic suture zone, SW Cyprus. Tectonophysics 299:229–253

    Google Scholar 

  • Moskowitz BM, Frankel RB, Bazylinski DA (1993) Rock magnetic criteria for the detection of biogenic magnetite. Earth Planet Sci Lett 120:283–300

    Google Scholar 

  • Mukasa SB, Ludden JN (1987) Uranium-lead ages of plagiogranite from the Troodos ophiolite, Cyprus, and their tectonic significance. Geology 15:825–828

    Google Scholar 

  • Murton BJ (1986) Anomalous oceanic lithosphere formed in a leaky transform fault: evidence from the Western Limassol Forest Complex, Cyprus. J Geol Soc Lond 143:845–854

    Google Scholar 

  • Murton BJ (1990) Was the Southern Troodos transform fault a victim of microplate rotation? In: Troodos ‘87, ophiolite and oceanic lithosphere. Geological Survey Department, Nicosia, pp 87–98

  • Murton BJ, Gass IG (1986) Western Limassol forest complex, Cyprus: part of an upper Cretaceous leaky transform fault. Geology 14:255–258

    Google Scholar 

  • Murton BJ, MacCleod CJ (1987) The Limassol forest and Arakapas fault belt. In: Xenophontos C, Malpas J (eds) Troodos 87: ophiolite and oceanic lithosphere. Geological Survey Department, Nicosia, pp 214–233

    Google Scholar 

  • O’Reilly W (1984) Rock and mineral magnetism. Chapman and Hall, New York, p 220

    Google Scholar 

  • Orszag-Sperber F, Rouchy JM, Elion P (1989) The sedimentary expression of regional tectonic events during the Miocene-Pliocene transition in the southern Cyprus basins. Geol Mag 126:291–299

    Google Scholar 

  • Panayides I, Xenophontos C, Malpas J (2000) In: Proceedings, third international conference on the geology of the Eastern Mediterranean. Geological Survey Department of Cyprus, Nicosia, 376 pp

  • Peters C, Dekkers MJ (2003) Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Phys Chem Earth 28:659–667

    Google Scholar 

  • Potter DK (2004) A comparison of anisotropy of magnetic remanence methods. In: Martin-Hernandez et al (eds) Magnetic fabrics, vol 238. Geological Society of London, Special Publication, pp 37–48

  • Ramsay JG (1967) Folding and fracturing of rocks. McGraw-Hill, New York, p 568

    Google Scholar 

  • Raymond CA, LaBreque JL (1987) Magnetization of the ocean crust: thermoremenant magnetization or chemical remanent magnetization? J Geophys Res 92:8077–8088

    Google Scholar 

  • Robertson AHF (1977a) The Moni Melange, Cyprus: an olistostrome formed at a destructive plate margin. J Geol Soc Lond 133:447–466

    Google Scholar 

  • Robertson AHF (1977b) Tertiary uplift history of the Troodos massif, Cyprus. Geol Soc Am Bull 88:1763–1772

    Google Scholar 

  • Robertson AHF (1990) Tectonic evolution of Cyprus. In: “Troodos 1987” ophiolites and oceanic lithosphere. Cyprus Geological Survey Department, Nicosia, pp 235–250

  • Robertson AHF (2000) Tectonic evolution of Cyprus in its Easternmost Mediterranean setting, In: Panayides I, Xenophontos C, Malpas J (eds) Proceedings of the third international conference on the geology of the Eastern Mediterranean, pp 11–44

  • Robertson AHF, Hudson JD (1974) Pelagic sediments in the Cretaceous and tertiary history of the Troodos Massif, Cyprus. Spec Publ Int Assoc Sedimentol 1:403–436

    Google Scholar 

  • Robertson AHF, Woodcock NH (1979) Mamonia Complex, southwest Cyprus: evolution and emplacement of a Mesozoic continental margin. Geol Soc Am Bull 90:651–665

    Google Scholar 

  • Robertson AHF, Woodcock NH (1986) The geological evolution of the Kyrenia Range: a critical lineament in the Eastern Mediterranean. In: Reading HG, Watterson J, White SH (eds) Major crustal lineaments and their influence on geological history of the continental lithosphere. Philos Trans R Soc Lond A317: 141–171

  • Robertson AHF, Eaton S, Follows EJ, McCallum JE (1991a) The role of local tectonics versus global sea-level changes in the Neogene evolution of the Cyprus active margin. Int Assoc Sedimentol 12:331–369 (special publication)

    Google Scholar 

  • Robertson AHF, Clift PD, Degnan PJ, Jones G (1991b) Paleogeographical and paleotectonic evolution of the eastern Mediterranean Neothethys. Paleooceanogr Paleoclimatol Paleoecol 87:289–343

    Google Scholar 

  • Robertson AHF, Kidd RB, Ivanov MK, Limonov AF, Woodside JM, Galindo-Zaldicar J, Nieto L (1995) Eratosthenes seamount: collisional processes in the easternmost Mediterranean in relation to the Plio-Quaternary uplift of southern Cyprus. Terra Nova 7:254–264

    Google Scholar 

  • Robinson PT (1989) Hole CY-4 of the Cyprus crustal study project. In: Cyprus crustal study project: initial report hole CY-4. Energy Mines and Resources of Canada, Paper 88-9, pp 1–4

  • Robinson PT, Malpas J (1987) The Cyprus crustal study project: ophiolites and ocean lithosphere. Troodos 1987 conference volume, Geological survey Dept, Nicosia, pp 15–26

  • Robion P, Borradaile GJ (2001) Stress remagnetization in pyrrhotite-calcite synthetic aggregates. Geophys J Int 144:96–104

    Google Scholar 

  • Rosenbaum G, Lister GS, Duboz C (2002) Relative motions of Africa, Iberia, and Europe during the Alpine Orogeny. Tectonophysics 359:117–129

    Google Scholar 

  • Savostin LA, Sibuet J-C, Zonenshain LP, Le Pichon X, Roulet M-J (1986) Kinematic evolution of the Tethys Belt from the Atlantic Ocean to the Pamirs since the Triassic. Tectonophysics 123:1–35

    Google Scholar 

  • Schmidt PW (1993) Palaeomagnetic cleaning strategies. Phys Earth Planet Inter 76:169–178

    Google Scholar 

  • Shau Y-H, Torii M, Horng C-S, Peacor DR (2000) Subsolidus evolution and alteration of titanomagnetite in ocean ridge basalts from DSDP Hole 504B: implications for the timing of magnetization. J Geophys Res 105:23635–23649

    Google Scholar 

  • Simonian KO, Gass IG (1978) Arakapas fault belt, Cyprus: a fossil transform fault. Geol Soc Am Bull 89:1220–1230

    Google Scholar 

  • Sissingh W (1977) Biostratigraphy of Cretaceous calcareous nannoplankton. Geologie en Mijnbouw 56:37–65

  • Spray JG, Roddick JC (1981) Evidence for upper Cretaceous transform metamorphism in West Cyprus. Earth Planet Sci Lett 55:273–291

    Google Scholar 

  • Stampfli GM, Borel GD (2002) A plate tectonic model for the Palaeozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet Sci Lett 196:17–33

    Google Scholar 

  • Staudigel H, Gillis K (1990) The timing of hydrothermal alteration in the Troodos ophiolite. In Malpas J et al (eds) Troodos 1987: ocean crustal analogues, pp 665–672

  • Staudigel H, Gillis K, Duncan R (1986) K/Ar and Rb/Sr ages of celadonites from Troodos ophiolite, Cyprus. Geology 14:72–75

    Google Scholar 

  • Staudigel H, Gee J, Tauxe L, Varga R (1992) Shallow intrusive directions of sheeted dikes in the Troodos ophiolite: anisotropy of magnetic susceptibility and structural data. Geology 20:841–844

    Google Scholar 

  • Stow DAV, Braakenburg NE, Xenophontos C (1995) The Pissouri Basin fan-delta complex, southwestern Cyprus. Sedim Geol 98:245–262

    Google Scholar 

  • Swarbrick RE, Robertson AHF (1980) Revised stratigraphy of the Mesozoic rocks of Southern Cyprus. Geol Mag 117:547–563

    Google Scholar 

  • Toft PB, Arkani-Hamed J (1993) Induced magnetization of the oceanic lithosphere and ocean-continent magnetization contrast derived from MAGSAT anomalies. J Geophys Res 98:6267–6282

    Google Scholar 

  • Trebilcock D-A (now D-A. Metsaranta) (2003) Rock magnetic studies of the CY-4 drill hole through the Troodos ophiolite, Cyprus. Lakehead University, Canada, 118 pp

  • Urquhart E, Banner FT (1994) Biostratigraphy of the supra-ophiolite sediments of the Troodos massif, Cyprus: the Cretaceous Perapedhi, Kannaviou, Moni and Kathikas Formations. Geol Mag 131:419–518

    Google Scholar 

  • Urquhart E, Robertson AHF (2000) Radiolarian evidence of late Cretaceous exotic blocks at Mangelini, Cyprus and implications for the origin and emplacement of the Moni Melange. In: Panayides I et al (eds) Proceedings 3rd international conference on geology of the Eastern Mediterranean. Geological Survey Department, Nicosia, pp 299–307

  • Vali PR, Mitchum RM, Shipley TH, Buffler RT (1980) Unconformities of the North Atlantic. Philos Trans R Soc Lond 294:137–155

    Google Scholar 

  • van der Voo R (1993) Palaeomagnetism of the Atlantic. Tethys and Iapetus Oceans, Cambridge University Press, p 411

    Google Scholar 

  • van Everdingen DA (1995) Fracture characteristics of the sheeted dike complex, Troodos ophiolite, Cyprus: implications for permeability of the ocean crust. J Geophys Res 100:19957–19972

    Google Scholar 

  • van Everdingen D, Cawood P (1995) Dyke domains in the Mitsero Graben, Troodos ophiolite, Cyprus: an off-axis model for graben formation at a spreading centre. J Geol Soc Lond 152:923–932

    Google Scholar 

  • Varga RJ (1991) Modes of extension at oceanic spreading centers: evidence from the Solea graben, Troodos ophiolite, Cyprus. J Struct Geol 13:517–537

    Google Scholar 

  • Varga RJ, Moores EM (1985) Spreading structure of the Troodos ophiolite, Cyprus. Geology 13:846–850

    Google Scholar 

  • Varga RJ, Gee JS, Staudigel H, Tauxe L (1998) Dike surface lineations as magma flow indicators within the sheeted dike complex of the Troodos Ophiolite, Cyprus. J Geophys Res 103:5241–5256

    Google Scholar 

  • Varga RJ, Gee JS, Bettison-Varga L, Anderson RS, Johnson CL (1999) Early establishment of sea-floor hydrothermal systems during structural extension: paleomagnetic evidence from the Troodos ophiolite, Cyprus. Earth. Planet Sci Lett 171(2):221–235

    Google Scholar 

  • Vine FJ (1966) Spreading of the ocean-floor: new evidence. Science 154:1405–1415

    Google Scholar 

  • Vine FJ, Matthews DH (1963) Magnetic anomalies over ocean-ridges. Nature 199:947–949

    Google Scholar 

  • Vine FJ, Smith GC (1990) Structural and physical properties of the Troodos crustal section at ICRDG drillholes CY1, 1a and 4

  • Vine FJ, Poster CK, Gass IG (1973) Aeromagnetic survey of the Troodos igneous massif, Cyprus. Nat Phys Sci 244:34–38

    Google Scholar 

  • Wang D, van der Voo R (2004) The hysteresis properties of multidomain magnetite and titanomagnetite/titanomaghemite in mid-ocean ridge basalts. Earth Planet Sci Lett 220:175–184

    Google Scholar 

  • Wang D, van der Voo R, Peacor DR (2006) Low temperature alteration and magnetic changes of variably altered pillow basalts. Geophys J Int 164:25–35

    Google Scholar 

  • Woodside JM (1977) Tectonic elements and crust of the Eastern Mediterranean. Mar Geophys Res 3:317–354

    Google Scholar 

  • Xu W, Peacor DR, Dollase WA, Van der Voo R, Beauboeuf R (1997) Transformation of titanomagnetite to titano-maghematite: a slow two-step, oxidation-ordering process in MORB. Am Mineral 82:1101–1110

    Google Scholar 

  • Zhou W, van der Voo R, Peacor DR, Zhang Y (2000) Variable Ti-content and grain-size of titanomagnetite as a function of cooling rate in very young MORB. Earth Planet Sci Lett 179:9–20

    Google Scholar 

Download references

Acknowledgments

The Natural Sciences and Engineering Research Council of Canada (NSERC) funded this work to Graham Borradaile at the Lakehead University Rock Magnetism and Deformation Laboratory as part of a long term laboratory installation and field program of research into magneto-tectonics (1979–2010). Fieldwork was only possible with the encouragement and unstinting assistance of the Geological Survey of Cyprus, through its Director Dr. George Petrides and his Liaison Officer Dr. Ioannis Panayides. Geology owes a debt of intellectual gratitude to the Geological Survey Department of Cyprus for its production of Memoirs, Conference volumes, maps and deep drilling programs. We thank Anne Hammond for the preparation of approximately six thousand excellent drill cores (for this and earlier related studies in Cyprus) in the laboratory from oriented field-blocks, not to mention countless perfect mineral separations and thin sections. Panicos Emilianou provided superb logistical support and generous help in Cyprus, with transport, rock shipping and storage. The hospitality and kindness of the Cypriot people in general is legendary, and there are too many instances of their extraordinary support to list individually. CyCar Rentals (Larnaca) subsidised transportation and logistics. We are indebted to Molspin Ltd (UK), AGICO (Brno, Czech Republic) and Sapphiremagnetics.com (Canada) for instrumental development support of a collegial nature. David Dunlop, Mike Jackson and Rob van der Voo provided helpful correspondence at various stages and the Editor and anonymous reviewers provided constructive improvements. This forms Publication No. 2563 of the Instut de Physique du Globe de Paris.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. Borradaile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borradaile, G.J., Lagroix, F., Hamilton, T.D. et al. Ophiolite Tectonics, Rock Magnetism and Palaeomagnetism, Cyprus. Surv Geophys 31, 285–359 (2010). https://doi.org/10.1007/s10712-009-9090-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-009-9090-2

Keywords

Navigation