Skip to main content
Log in

Upper Mantle Imaging with Array Recordings of Converted and Scattered Teleseismic Waves

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

This paper provides a review of array-based imaging techniques that use converted and scattered teleseismic waves. It addresses various aspects of the imaging process, from the preprocessing of the data to the application of the imaging algorithms. The reviewed techniques form a continuum with respect to the level of complexity adopted in the treatment of the scattering problem. On one end of the spectrum, images may be produced by simple stacking of normalized P-to-S conversion records (i.e., receiver functions), which are binned according to station or common conversion points (CCP) and mapped to depth. Finer resolution can be achieved through the stacking of singly scattered wavefields along diffraction hyperbolae to recover relative scattering intensity/potential at individual points through a 2-D or 3-D model space. Moving to higher levels of complexity, we find methods that involve inversion/backprojection of scattered teleseismic wavefield to recover estimates of localized material property perturbations with respect to an a priori background model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Aki K, Richards PG (2002) Quantitative seismology, 2nd edn. University Science Books, Sausalito, CA

    Google Scholar 

  • Båth M, Stefánsson R (1966) SP conversions at the base of the crust. Ann Geofis 19:119–130

    Google Scholar 

  • Berkhout AJ (1977) Least-squares inverse filtering and wavelet deconvolution. Geophysics 42(7):1369–1383

    Article  Google Scholar 

  • Bostock M (1999) Seismic imaging of lithospheric discontinuities and continental evolution. Lithos 48(1–4):1–16

    Article  Google Scholar 

  • Bostock MG (1998) Mantle stratigraphy and evolution of the Slave province. J Geophys Res 103(B9):21183–21200

    Article  Google Scholar 

  • Bostock MG (2004) Green’s functions, source signatures, and the normalization of teleseismic wave fields. J Geophys Res 109:B03303. doi:10.1029/2003JB002783

    Article  Google Scholar 

  • Bostock MG, Rondenay S (1999) Migration of scattered teleseismic body waves. Geophys J Int 137:732–746

    Article  Google Scholar 

  • Bostock MG, Rondenay S, Shragge J (2001) Multiparameter two-dimensional inversion of scattered teleseismic body waves, 1, Theory for oblique incidence. J Geophys Res 106:30771–30782

    Article  Google Scholar 

  • Burdick LJ, Langston CA (1977) Modeling crustal structure through the use of converted phases in teleseismic body-wave forms. Bull Seismol Soc Am 67(3):677–691

    Google Scholar 

  • Crotwell HP, Owens TJ, Ritsema J (1999) The TauP Toolkit: flexible seismic travel-time and ray-path utilities. Seismol Res Lett 70:154–160

    Google Scholar 

  • Dueker KG, Sheehan AF (1997) Mantle discontinuity structure from midpoint stacks of converted p to s waves across the Yellowstone hotspot track. J Geophys Res 102:8313–8327

    Article  Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary Reference Earth Model. Phys Earth Planet Int 25:297–356

    Article  Google Scholar 

  • Frederiksen AW, Bostock MG (2000) Modelling teleseismic waves in dipping anisotropic structures. Geophys J Int 141:401–412

    Article  Google Scholar 

  • Frederiksen AW, Revenaugh J (2004) Lithospheric imaging via teleseismic scattering tomography. Geophys J Int 159:978–990

    Article  Google Scholar 

  • Gurrola H, Baker GE, Minster JB (1995) Simultaneous time-domain deconvolution with application to the computation of receiver functions. Geophys J Int 120:537–543

    Article  Google Scholar 

  • Kennett BLN (1991) The removal of free surface interactions from three-component seismograms. Geophys J Int 104:153–163

    Article  Google Scholar 

  • Kikuchi M, Kanamori H (1982) Inversion of complex body waves. Bull Seismol Soc Am 72(2):491–506

    Google Scholar 

  • Kind R, Kosarev GL, Petersen NV (1995) Receiver functions at the stations of the German Regional Seismic Network (GRSN). Geophys J Int 121:191–202

    Article  Google Scholar 

  • Kosarev G, Kind R, Sobolev SV, Yuan X, Hanka W, Oreshin S (1999) Seismic evidence for a detached Indian lithospheric mantle beneath Tibet. Science 283:1306–1309

    Article  Google Scholar 

  • Langston CA (1979) Structure under Mount Rainier, Washington, inferred from teleseismic body waves. J Geophys Res 84:4749–4762

    Article  Google Scholar 

  • Levander A, Niu F, Symes WW (2005) Imaging teleseismic P and S scattered waves using the Kirchhoff integral. In: Levander A, Nolet G (eds) Seismic Earth: array analysis of broadband seismograms, No. 157 in AGU Geophysical Monograph. AGU, Washington, DC, pp 149–169

  • Li X, Yuan X, Kind R (2007) The lithosphere-asthenosphere boundary beneath the western United States. Geophys J Int 170:700–710

    Article  Google Scholar 

  • Ligorría JP, Ammon CJ (1999) Iterative deconvolution and receiver-function estimation. Bull Seismol Soc Am 89(5):1395–1400

    Google Scholar 

  • Miller D, Oristaglio M, Beylkin G (1987) A new slant on seismic imaging: migration and integral geometry. Geophysics 52:943–964

    Article  Google Scholar 

  • Park J, Levin V (2000) Receiver functions from multiple-taper spectral correlation estimates. Bull Seismol Soc Am 90(6):1507–1520

    Article  Google Scholar 

  • Poppeliers C, Pavlis GL (2003a) Three-dimensional, prestack, plane wave migration of teleseismic P-to-S converted phases: 1. Theory. J Geophys Res 108:2112. doi:10.1029/2001JB000216

    Article  Google Scholar 

  • Poppeliers C, Pavlis GL (2003b) Three-dimensional, prestack, plane wave migration of teleseismic P-to-S converted phases: 2. Stacking multiple events. J Geophys Res 108:2267. doi:10.1029/2001JB001583

    Article  Google Scholar 

  • Pratt RG (1999) Seismic waveform inversion in the frequency domain, Part 1: theory and verification in a physical scale model. Geophysics 64(3):888–901

    Article  Google Scholar 

  • Reading A, Kennett BLN, Sambridge M (2003) Improved inversion for seismic structure using transformed, S-wavevector receiver functions: removing the effect of the free surface. Geophys Res Lett 30(19):1981. doi:10.1029/2003GL018090

    Article  Google Scholar 

  • Revenaugh J (1995) A scattered-wave image of subduction beneath the transverse ranges. Science 268:1888–1892

    Article  Google Scholar 

  • Rondenay S, Bostock MG, Hearn TM, White DJ, Ellis RM (2000) Lithospheric assembly and modification of the SE Canadian Shield: Abitibi–Grenville teleseismic experiment. J Geophys Res 105(B6):13735–13754

    Article  Google Scholar 

  • Rondenay S, Bostock MG, Shragge J (2001) Multiparameter two-dimensional inversion of scattered teleseismic body waves, 3, Application to the Cascadia 1993 data set. J Geophys Res 106:30795–30808

    Article  Google Scholar 

  • Rondenay S, Bostock M, Fischer K (2005) Multichannel inversion of scattered teleseismic body waves: Practical considerations and applicability. In: Levander A, Nolet G (eds) Seismic Earth: array analysis of broadband seismograms, No. 157 in AGU Geophysical Monograph. AGU, Washington, DC, pp 187–204

  • Rondenay S, Abers GA, van Keken PE (2008) Seismic imaging of subduction zone metamorphism. Geology 36:275–278

    Article  Google Scholar 

  • Ryberg T, Weber M (2000) Receiver function arrays: a reflection seismic approach. Geophys J Int 141:1–11

    Article  Google Scholar 

  • Rychert CA, Fischer KM, Rondenay S (2005) A sharp lithosphere–asthenosphere boundary imaged beneath eastern North America. Nature 436:542–545

    Article  Google Scholar 

  • Rychert CA, Rondenay S, Fischer KM (2007) P-to-S and S-to-P imaging of a sharp lithosphere–asthenosphere boundary beneath eastern North America. J Geophys Res 112(B8):B08314. doi:10.1029/2007GL029535

    Article  Google Scholar 

  • Sheehan AF, Shearer PM, Gilbert HJ, Dueker KG (2000) Seismic migration processing of PSV converted phases for mantle discontinuity structure beneath the Snake River Plain, western United States. J Geophys Res 105:19055–19065

    Article  Google Scholar 

  • Sipkin SA, Lerner-Lam AL (1992) Pulse-shape distortion introduced by broadband deconvolution. Bull Seismol Soc Am 82(1):238–258

    Google Scholar 

  • Suckale J, Rondenay S, Sachpazi M, Charalampakis M, Hosa A, Royden L (2007) Imaging the southern hellenic subduction zone through migration of scattered teleseismic body waves. Eos Trans AGU 88(52):Fall Meet. Suppl., Abstract T51B-0558

  • Svenningsen L, Jacobsen BH (2004) Comment on Improved inversion for seismic structure using transformed, S-wavevector receiver functions: removing the effect of the free surface by Anya Reading, Brian Kennett, and Malcolm Sambridge. Geophys Res Lett 31:L24609. doi:10.1029/2004GL021413

    Article  Google Scholar 

  • Svenningsen L, Jacobsen BH (2007) Absolute S-velocity estimation from receiver functions. Geophys J Int 170:1089–1094

    Article  Google Scholar 

  • Tromp J, Komatitsch D, Liu Q (2008) Spectral-element and adjoint methods in seismology. Commun Comput Phys 3:1–32

    Google Scholar 

  • Vinnik L (1977) Detection of waves converted from P to SV in the mantle. Phys Earth Planet Int 15:39–45

    Article  Google Scholar 

  • Vinnik L, Farra V (2002) Subcratonic low-velocity layer and flood basalts. Geophys Res Lett 29(4):1049. doi:10.1029/2001GL014064

    Article  Google Scholar 

  • Wang P, de Hoop MV, van der Hilst RD (2008) Imaging of the lowermost mantle (D″) and the core–mantle boundary with SKKS coda waves. Geophys J Int 175:103–115

    Article  Google Scholar 

  • Xu L, Rondenay S, van der Hilst RD (2007) Structure of the crust beneath the southeastern Tibetan Plateau from teleseismic receiver functions. Phys Earth Planet Int 165:176–193

    Article  Google Scholar 

  • Yilmaz O (2001) Seismic data analysis, 2nd edn. Society of Exploration Geophysicists, Tulsa, Oklahoma

    Google Scholar 

  • Yuan X, Kind R, Li X, Wang R (2006) The S receiver functions: synthetics and data example. Geophys J Int 165:555–564

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks Alan Levander and Xueqing Li for permission to use their figures and for providing electronic files of the originals; Karen Fischer, for insightful discussions on Sp receiver functions; Chuck Ammon, for input on the iterative time-domain deconvolution approach; and two anonymous reviewers for their thoughtful suggestions, which helped improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Rondenay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rondenay, S. Upper Mantle Imaging with Array Recordings of Converted and Scattered Teleseismic Waves. Surv Geophys 30, 377–405 (2009). https://doi.org/10.1007/s10712-009-9071-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-009-9071-5

Keywords

Navigation