Skip to main content
Log in

Checkerboard incircular nets: Laguerre geometry and parametrisation

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We present a procedure which allows one to integrate explicitly the class of checkerboard IC-nets which has recently been introduced as a generalisation of incircular (IC) nets. The latter class of privileged congruences of lines in the plane is known to admit a great variety of geometric properties which are also present in the case of checkerboard IC-nets. The parametrisation obtained in this manner is reminiscent of that associated with elliptic billiards. Connections with discrete confocal coordinate systems and the fundamental QRT maps of integrable systems theory are made. The formalism developed in this paper is based on the existence of underlying pencils of conics and quadrics which is exploited in a Laguerre geometric setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Akopyan, A., Bobenko, A.I.: Incircular nets and confocal conics. Trans. AMS 370(4), 2825–2854 (2018)

    Article  MathSciNet  Google Scholar 

  2. Blaschke, W.: Untersuchungen über die Geometrie der Speere in der Euklidischen Ebene, Separatdruck aus “Monatshefte f. Mathematik u. Physik”, XXI, Hamburg (1910)

    Article  MathSciNet  Google Scholar 

  3. Blaschke, W., Thomsen, G.: Vorlesungen über Differentialgeometrie und Geometrische Grundlagen von Einsteins Relativitätstheorie. III. Differentialgeometrie der Kreise und Kugeln. Springer, Berlin (1929)

    Book  Google Scholar 

  4. Bobenko, A.I., Schief, W.K., Suris, Y.B., Techter, J.: On a discretization of confocal quadrics. I. An integrable systems approach. J. Integrable Syst. 1, xyw005 (2016). (34 pp)

    Article  Google Scholar 

  5. Bobenko, A.I., Schief, W.K., Suris, Y.B., Techter, J.: On a discretization of confocal quadrics. II. A geometric approach to general parametrizations. Int. Math. Res. Notices rny279 (2018). https://doi.org/10.1093/imrn/rny279

  6. Bobenko, A.I., Suris, Y.B.: Discrete differential geometry. Integrable structure. In: Graduate Studies in Mathematics 98, (2008). Providence, AMS

  7. Böhm, W.: Verwandte Sätze über Kreisvierseitnetze. Arch. Math. (Basel) 21, 326–330 (1970)

    Article  MathSciNet  Google Scholar 

  8. Darboux, G.: Leçons sur la Théorie Générale des surfaces et les applications Géométriques du Calcul Infinitésimal, vol. 2,3. Gauthier-Villars, Paris (1887)

    MATH  Google Scholar 

  9. Darboux, G.: Principes de Géométrie Analytique. Gauthier-Villars, Paris (1917)

    MATH  Google Scholar 

  10. Dragović, V., Radnović, M.: Poncelet Porisms and Beyond Integrable Billiards, Hyperelliptic Jacobians and Pencils of Quadrics, Frontiers in Mathematics. Birkhäuser, Basel (2011)

    MATH  Google Scholar 

  11. Iatrou, A., Roberts, J.A.G.: Integrable mappings of the plane preserving biquadratic invariant curves. J. Phys. A Math. Gen. 34, 6617–6636 (2001)

    Article  MathSciNet  Google Scholar 

  12. Izmestiev, I., Tabachnikov, S.: Ivory’s theorem revisited. J. Integr. Syst. 2, xyx006 (2017)

    Article  MathSciNet  Google Scholar 

  13. Levi, M., Tabachnikov, S.: The Poncelet grid and billiards in ellipses. Am. Math. Mon. 114, 895–908 (2007)

    Article  MathSciNet  Google Scholar 

  14. Levy, H.: Projective and Related Geometries. Macmillan, New York (1964)

    MATH  Google Scholar 

  15. NIST Digital Library of Mathematical Functions (online at dlmf.nist.gov), National Institute of Standards and Technology, U.S. Department of Commerce (2010–2018)

  16. Pottmann, H., Grohs, P., Baschitz, B.: Edge offset meshes in Laguerre geometry. Adv. Comput. Math. 33(1), 45–73 (2010)

    Article  MathSciNet  Google Scholar 

  17. Quispel, G.R.W., Roberts, J.A.G., Thompson, C.J.: Integrable mappings and soliton equations II. Phys. D 34, 183–192 (1989)

    Article  MathSciNet  Google Scholar 

  18. Ramani, A., Grammaticos, B., Willox, R.: Generalized QRT mappings with periodic coefficients. Nonlinearity 24, 113–126 (2011)

    Article  MathSciNet  Google Scholar 

  19. Roberts, J.A.G., Jogia, D.: Birational maps that send biquadratic curves to biquadratic curves. J. Phys. A Math. Theor. 48, 08FT02 (2015)

    Article  MathSciNet  Google Scholar 

  20. Schwartz, R.E.: The Poncelet grid. Adv. Geom. 7, 157–175 (2007)

    Article  MathSciNet  Google Scholar 

  21. Skopenkov, M., Pottmann, H., Grohs, P.: Ruled Laguerre minimal surfaces. Math. Z. 272, 245–274 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are indebted to Yuri Suris for insightful comments and discussions. This research was supported by the DFG Collaborative Research Center TRR 109 “Discretization in Geometry and Dynamics”. W.K.S. was also supported by the Australian Research Council (DP1401000851).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang K. Schief.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Laguerre geometry

Appendix: Laguerre geometry

Here, we present the basic facts about Laguerre geometry, focussing on the Blaschke cylinder model employed in this paper for studying checkerboard IC-nets. We begin with the more fundamental Lie sphere geometry. Lie sphere geometry in the plane is the geometry of oriented circles and lines. These are described as elements of the Lie quadric

$$\begin{aligned} {\mathscr {L}}=P(\mathbb {L}^{3,2}), \quad \mathbb {L}^{3,2}=\{x\in \mathbb {R}^{3,2}| <x,x>_{\mathbb {R}^{3,2}}=0\}. \end{aligned}$$

Let \(e_1,e_2,e_3,e_4,e_5\) be an orthonormal basis with signature \((+++--)\). For our purposes, another basis \(e_1, e_2, e_5, e_\infty , e_0\) defined by

$$\begin{aligned} e_0=\frac{1}{2}(e_4-e_3),\quad e_\infty =\frac{1}{2}(e_4+e_3),\quad <e_0,e_\infty >=-\,\frac{1}{2} \end{aligned}$$

turns out to be more convenient. Elements of \(\mathscr {L}\) with non-vanishing \(e_0\)-component are identified with oriented circles \(|{\varvec{x}}-{\varvec{c}}|^2=r^2\), centred at \({\varvec{c}}\in \mathbb {R}^2\) and of radius \(r\in \mathbb {R}\):

$$\begin{aligned} s={\varvec{c}}+re_5+(|{\varvec{c}}|^2-r^2)e_\infty +e_0. \end{aligned}$$
(42)

Points are circles of radius \(r=0\), and oriented lines \(({\varvec{v}},{\varvec{x}})_{\mathbb {R}^2}=d\) are elements of \(\mathscr {L}\) with vanishing \(e_0\)-component:

$$\begin{aligned} p={\varvec{v}}+e_5+2de_\infty . \end{aligned}$$
(43)

The incidence \(<p,s>=0\) is the condition

$$\begin{aligned} ({\varvec{c}},{\varvec{v}})-r=d \end{aligned}$$
(44)

of oriented contact of a circle and a line.

The Lie sphere transformation group \(\textit{PO}(3,2)\) acting on \(P(\mathbb {R}^{3,2})\) preserves the Lie quadric \(\mathscr {L}\) and maps oriented circles and lines to oriented circles and lines, preserving oriented contact. Its subgroup of Laguerre transformations preserves the set of straight lines or, equivalently, the hyperplane

$$\begin{aligned} {\mathsf P}=\mathrm{span}\{e_1,e_2,e_5,e_\infty \}=\{w\in \mathbb {R}^{3,2}|<w,e_\infty >=0\}. \end{aligned}$$

Direct computation shows that the elements of \(\textit{PO}(3,2)\) preserving the hyperplane \(\mathsf P\) are of the form

$$\begin{aligned} \left( \begin{matrix} \lambda B &{}\quad 0 &{}\quad \alpha \\ b^T &{}\quad 1 &{}\quad \nu \\ 0 &{}\quad 0 &{}\quad \lambda ^{-2} \end{matrix}\right) \end{aligned}$$

in the basis \(e_1,e_2,e_5,e_\infty ,e_0\), where

$$\begin{aligned} B\in O(2,1),\quad b\in \mathbb {R}^{2,1},\quad \alpha =\frac{\lambda }{2}Bb,\quad \nu =\frac{\lambda }{4}(b,b)_{\mathbb {R}^{2,1}},\quad \lambda \in \mathbb {R}. \end{aligned}$$

In order to pass to the Blaschke cylinder model of Laguerre geometry, we confine ourselves to the subspace \({\mathscr {P}}=\mathrm{span}\{e_1,e_2,e_5,e_\infty \}\). Elements of this space can be identified with straight lines, described (projectively) by

$$\begin{aligned} \tilde{p}=\tilde{{\varvec{v}}}+\tilde{s}e_5+2\tilde{d}e_\infty \end{aligned}$$

as points of the Blaschke cylinder

$$\begin{aligned} {\mathscr {Z}}=\{ [\tilde{p}]\in P(\mathbb {R}^{2,1,1})| |\tilde{{\varvec{v}}}|^2=\tilde{s}^2\}. \end{aligned}$$
(45)

Identification with (43) is made via the normalisation of the \(e_0\)-component: \({\varvec{v}}=\tilde{{\varvec{v}}}/\tilde{s}\), \(d=\tilde{d}/\tilde{s}\). It is noted that the symmetry with the description of circles (42) in Lie sphere geometry is no longer present in the Blaschke cylinder model, and oriented circles are described as the sets of all straight lines in oriented contact, i.e., the sets of lines satisfying the condition (44), that is

$$\begin{aligned} S= \{({\varvec{v}},d)\in \mathbb {R}^3| ({\varvec{c}},{\varvec{v}})_{\mathbb {R}^2}-r=d \}. \end{aligned}$$

Furthermore, Laguerre transformations restricted to the subspace of lines \({\mathsf P}=\mathrm{span}\{e_1,e_2,e_5,e_\infty \}\) are of the form

$$\begin{aligned} A= \left( \begin{matrix} \lambda B &{}\quad 0 \\ b^T &{}\quad 1 \end{matrix}\right) . \end{aligned}$$
(46)

Theorem 12

The group of Laguerre transformations in the Blaschke (projective) cylinder model (in the basis \(e_1,e_2,e_5,e_\infty \)) is represented by matrices of the form (46), where \(B\in O(2,1),\, b\in \mathbb {R}^{2,1},\, \lambda \in \mathbb {R}\). These transformations preserve the Blaschke cylinder (45).

We conclude by observing that Euclidean motions

$$\begin{aligned} {\varvec{x}}\rightarrow \tilde{{\varvec{x}}}=R{\varvec{x}}+\varDelta , \quad R\in O(2),\quad \varDelta \in \mathbb {R}^2 \end{aligned}$$

are particular Laguerre transformations, the corresponding matrix of which is given by (46) with

$$\begin{aligned} B=\left( \begin{matrix} R^T &{}\quad 0 \\ 0 &{}\quad 1 \end{matrix}\right) ,\quad b=\left( \begin{matrix} 2R\varDelta \\ 0 \end{matrix}\right) \end{aligned}$$
(47)

and \(\lambda =1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobenko, A.I., Schief, W.K. & Techter, J. Checkerboard incircular nets: Laguerre geometry and parametrisation. Geom Dedicata 204, 97–129 (2020). https://doi.org/10.1007/s10711-019-00449-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-019-00449-x

Keywords

Mathematics Subject Classification (2010)

Navigation