Skip to main content
Log in

Lattice surfaces and smallest triangles

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We calculate the area of the smallest triangle and the area of the smallest virtual triangle for many known lattice surfaces. We show that our list of the lattice surfaces for which the area of the smallest virtual triangle greater than \(1\over 20\) is complete. In particular, this means that there are no new lattice surfaces for which the area of the smallest virtual triangle is greater than .05. Our method follows an algorithm described by Smillie and Weiss and improves on it in certain respects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bainbridge, M., Habegger, P., Moeller, M.: Teichmüeller curves in genus three and just likely intersections in \({G}_m^n\times {G}_a^n\). arXiv preprint arXiv:1410.6835 (2014)

  2. Bainbridge, M., Möller, M.: The Deligne–Mumford compactification of the real multiplication locus and Teichmüller curves in genus 3. Acta Math. 208(1), 1–92 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bouw, I.I., Möller, M.: Teichmüller curves, triangle groups, and Lyapunov exponents. Ann. Math. 172(2), 139–185 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Calta, K.: Veech surfaces and complete periodicity in genus two. J. Am. Math. Soc. 17(4), 871–908 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Delecroix, V.: Flatsurf package of sagemath. http://www.labri.fr/perso/vdelecro/flatsurf.html

  6. Eskin, A., Mirzakhani, M., Mohammadi, A.: Isolation, equidistribution, and orbit closures for the \({SL}(2, {\mathbb{R}})\) action on Moduli space. Ann. Math. 182(2), 673–721 (2015)

  7. Hooper, W.P.: Grid graphs and lattice surfaces. Int. Math. Res. Not. 2013(12), 2657–2698 (2013)

  8. Kenyon, R., Smillie, J.: Billiards on rational-angled triangles. Comment. Math. Helv. 75(1), 65–108 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lanneau, E., Nguyen, D.M.: Teichmüller curves generated by Weierstrass Prym eigenforms in genus 3 and genus 4. J. Topol. 7(2), 475–522 (2014)

  10. Lanneau, E., Nguyen, D.M., Wright, A.: Finiteness of Teichmüller curves in non-arithmetic rank 1 orbit closures. arXiv preprint arXiv:1504.03742 (2015)

  11. Leininger, C.J.: On groups generated by two positive multi-twists: Teichmüller curves and Lehmers number. Geom. Topol. 8(3), 1301–1359 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Matheus, C., Wright, A.: Hodge-Teichmüller planes and finiteness results for Teichmüller curves. Duke Math. J. 164(6), 1041–1077 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. McMullen, C.T.: Teichmüller curves in genus two: discriminant and spin. Math. Ann. 333(1), 87–130 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. McMullen, C.T., et al.: Prym varieties and teichmüller curves. Duke Math. J. 133(3), 569–590 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Smillie, J., Weiss, B.: Minimal sets for flows on moduli space. Isr. J. Math. 142(1), 249–260 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Smillie, J., Weiss, B.: Characterizations of lattice surfaces. Invent. Math. 180(3), 535–557 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Thurston, W.P., et al.: On the geometry and dynamics of diffeomorphisms of surfaces. Bull. New. Ser. Am. Math. Soc. 19(2), 417–431 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Veech, W.A.: Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards. Invent. Math. 97(3), 553–583 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Vorobets, Y.B.: Planar structures and billiards in rational polygons: the Veech alternative. Russ. Math. Surv. 51(5), 779–817 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wright, A.: Schwarz triangle mappings and Teichmüller curves: abelian square-tiled surfaces. J. Mod. Dyn. 6(3), 405–426 (2012)

  21. Wright, A.: Translation surfaces and their orbit closures: An introduction for a broad audience. arXiv preprint arXiv:1411.1827 (2014)

  22. Zhong, Y.: On the areas of the minimal triangles in Veech surfaces (in preparation)

Download references

Acknowledgments

The author thanks his thesis advisor John Smillie for suggesting the problem and for many helpful conversations, and Alex Wright and Anja Randecker for many helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenxi Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C. Lattice surfaces and smallest triangles. Geom Dedicata 187, 107–121 (2017). https://doi.org/10.1007/s10711-016-0191-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-016-0191-z

Keywords

Mathematics Subject Classification (2010)

Navigation