Skip to main content
Log in

Closed-form characterization of the Minkowski sum and difference of two ellipsoids

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

This paper makes three original contributions: (1) Explicit closed-form parametric formulas for the boundary of the Minkowski sum and difference of two arbitrarily oriented solid ellipsoids in n-dimensional Euclidean space are presented; (2) Based on this, new closed-form lower and upper bounds for the volume contained in these Minkowski sums and differences are derived in the 2D and 3D cases and these bounds are shown to be better than those in the existing literature; (3) A demonstration of how these ideas can be applied to problems in computational geometry and robotics is provided, and a relationship to the Principal Kinematic Formula from the fields of integral geometry and geometric probability is uncovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. In the case of the Minkowski difference, mild conditions are imposed requiring one body to be containable in the other at all orientations and under all kissing conditions.

  2. Of course the same applies for \(E_2\) in its principal axis frame with \(\mathbf{a}_1 \,\rightarrow \, \mathbf{a}_2\).

  3. Since area takes the place of volume in 2D problems, and we retain the symbol \(V\) when referring to area.

References

  1. http://www.numericana.com/answer/ellipsoid.htm#thomsen (2006)

  2. Agarwal, P.K., Flato, E., Halperin, D.: Polygon decomposition for efficient construction of Minkowski sums. Comput. Geom. 21(1–2), 39–61 (2002). doi:10.1016/S0925-7721(01)00041-4

    Google Scholar 

  3. Alfano, S., Greer, M.L.: Determining if two solid ellipsoids intersect. J. Guid. Control Dyn. 26(1), 106–110 (2003). http://cat.inist.fr/?aModele=afficheN&cpsidt=14481669

    Google Scholar 

  4. Bajaj, C.L., Kim, M.-S.: Generation of configuration space obstacles: the case of moving algebraic curves. Algorithmica 4(1–4), 157–172 (1989)

    Article  MathSciNet  Google Scholar 

  5. Behar, E., Lien, J.-M.: Dynamic Minkowski sum of convex shapes. In: Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, pp. 3463–3468 (2011)

  6. Behar, E., Lien, J.-M.: Dynamic Minkowski sum of convex shapes. In: 2011 IEEE International Conference on Robotics and Automation, pp. 3463–3468. IEEE (2011). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5979992

  7. Blaschke, W.: Einige bemerkungen über kurven und flächen konstanter breite. Leipz. Ber. 57, 290–297 (1915)

    Google Scholar 

  8. Blaschke, W.: Vorlesungen über Integralgeometrie. VEB Dt. Verlag d. Wiss (1955)

  9. Boothroyd, G., Redford, A.H.: Mechanized Assembly: Fundamentals of Parts Feeding, Orientation, and Mechanized Assembly. McGraw-Hill, New York (1968)

    Google Scholar 

  10. Chan, K., Hager, W.W., Huang, S.-J., Pardalos, P.M., Prokopyev, O.A., Pardalos, P.: Multiscale Optimization Methods and Applications, ser. Nonconvex Optimization and Its Applications, vol. 82. Kluwer, Boston (2006). http://www.springerlink.com/content/x427m4u6313241p4/

  11. Chirikjian, G.S.: Parts entropy and the principal kinematic formula. In: Automation Science and Engineering: CASE 2008. IEEE International Conference on, pp. 864–869. IEEE 2008 (2008)

  12. Chirikjian, G.S.: Stochastic Models, Information Theory, and Lie Groups, Volume 1: Analytic Methods and Modern Applications, vol. 1. Birkhäuser, Boston (2009)

    Book  Google Scholar 

  13. Chirikjian, G.S.: Stochastic Models, Information Theory, and Lie Groups, Volume 2: Analytic Methods and Modern Applications, vol. 1. Birkhäuser, Boston (2011)

    Google Scholar 

  14. Fogel, E., Halperin, D.: Exact and efficient construction of Minkowski sums of convex polyhedra with applications. Comput.-Aided Des. 39(11), 929–940 (2007). http://linkinghub.elsevier.com/retrieve/pii/S0010448507001492

    Google Scholar 

  15. Glasauer, S.: A generalization of intersection formulae of integral geometry. Geom. Dedic. 68(1), 101–121 (1997)

    Article  MathSciNet  Google Scholar 

  16. Glasauer, S.: Translative and kinematic integral formulae concerning the convex hull operation. Math. Z. 229(3), 493–518 (1998)

    Article  MathSciNet  Google Scholar 

  17. Goldman, R.: Curvature formulas for implicit curves and surfaces. Comput. Aided Geom. Des. 22(7), 632–658 (2005)

    Article  Google Scholar 

  18. Goodey, P., Weil, W.: Translative integral formulae for convex bodies. Aequ. Math. 34(1), 64–77 (1987)

    Article  MathSciNet  Google Scholar 

  19. Goodey, P., Weil, W.: Intersection bodies and ellipsoids. Mathematika 42(02), 295–304 (1995). http://journals.cambridge.org/abstract_S0025579300014601

    Google Scholar 

  20. Goodey, P., Well, W.: Intersection bodies and ellipsoids. Math. Lond. 42, 295–304 (1995)

    Google Scholar 

  21. Groemer, H.: On translative integral geometry. Arch. Math. 29(1), 324–330 (1977)

    Article  MathSciNet  Google Scholar 

  22. Guibas, L., Ramshaw, L., Stolfi, J.: A kinetic framework for computational geometry. In: Proceedings of the 24th Annual IEEE Symposium Foundations of Computer Science, pp. 100–111 (1983)

  23. Hachenberger, P.: Exact Minkowksi sums of polyhedra and exact and efficient decomposition of polyhedra into convex pieces. Algorithmica 55(2), 329–345 (2008). http://dl.acm.org/citation.cfm?id=1554962.1554966

    Google Scholar 

  24. Hadwiger, H.: Altes und Neues ü ber konvexe Körper. Birkhäuser, Basel (1955)

    Book  Google Scholar 

  25. Halperin, D., Latombe, J.-C., Wilson, R.H.: A general framework for assembly planning: the motion space approach. Algorithmica 26(3–4), 577–601 (2000)

    Article  MathSciNet  Google Scholar 

  26. Hartquist, E., Menon, J., Suresh, K., Voelcker, H., Zagajac, J.: A computing strategy for applications involving offsets, sweeps, and Minkowski operations. Comput.-Aided Des. 31(3), 175–183 (1999). 10.1016/S0010-4485(99)00014-7

  27. Karnik, M., Gupta, S.K., Magrab, E.B.: Geometric algorithms for containment analysis of rotational parts. Comput.-Aided Des. 37(2), 213–230 (2005)

    Article  Google Scholar 

  28. Kaul, A., Farouki, R.T.: Computing minkowski sums of plane curves. Int. J. Comput. Geom. Appl. 5(04), 413–432 (1995)

    Article  MathSciNet  Google Scholar 

  29. Klain, D.A., Rota, G.-C.: Introduction to Geometric Probability. University Press, Cambridge (1997)

    Google Scholar 

  30. Klamkin, M.: Elementary approximations to the area of n-dimensional ellipsoids. Am. Math. Mon. 78(3), 280–283 (1971)

    Article  Google Scholar 

  31. Kurzhanskiĭ, A., Vályi, I.: Ellipsoidal Calculus for Estimation and Control. In: Birkhäuser Mathematics, vol. XV (1994)

  32. Kurzhanskiy, A.A., Varaiya, P.: Ellipsoidal toolbox (et). In: Decision and Control, 2006 45th IEEE Conference on. IEEE, pp. 1498–1503 (2006)

  33. Latombe, J.-C.: Robot Motion Planning. Kluwer, Dordrecht (1990)

    Google Scholar 

  34. Lee, I.-K., Kim, M.-S., Elber, G.: Polynomial/rational approximation of minkowski sum boundary curves. Graph. Models Image Process. 60(2), 136–165 (1998)

    Article  Google Scholar 

  35. Lehmer, D.H.: Approximations to the area of an n-dimensional ellipsoid. Can. J. Math. 2, 267–282 (1950)

    Article  MathSciNet  Google Scholar 

  36. Perram, J. W., Wertheim, M.: Statistical mechanics of hard ellipsoids. I. Overlap algorithm and the contact function. J. Comput. Phys. 58(3), 409–416 (1985). doi:10.1016/0021-9991(85)90171-8

    Google Scholar 

  37. Pfiefer, R.: Surface area inequalities for ellipsoids using Minkowski sums. Geom. Dedic. 28(2), 171–179 (1988). http://link.springer.com/10.1007/BF00147449

  38. Poincaré, H.: Calcul de Probabilités, 2nd edn. Paris (1912)

  39. Rivin, I.: Surface area and other measures of ellipsoids. Adv. Appl. Math. 39(4), 409–427 (2007). http://linkinghub.elsevier.com/retrieve/pii/S019688580700070X

  40. Ros, L., Sabater, A., Thomas, F.: An ellipsoidal calculus based on propagation and fusion. Syst. Man Cybern. Part B Cybern. IEEE Trans. 32(4), 430–442 (2002)

    Google Scholar 

  41. Sack, J.-R., Urrutia, J.: Handbook of Computational Geometry. North Holland, Amsterdam (1999)

    Google Scholar 

  42. Salomon, D.: Curves and Surfaces for Computer Graphics. Springer, New York (2006)

    Google Scholar 

  43. Santaló, L.A.: Integral Geometry and Geometric Probability. Cambridge University Press, Cambridge, MA (2004)

    Book  Google Scholar 

  44. Schneider, R.: Kinematic measures for sets of colliding convex bodies. Mathematika 25(01), 1–12 (1978)

    Article  MathSciNet  Google Scholar 

  45. Schneider, R.: Integral geometric tools for stochastic geometry. In: Lecture Notes in Mathematics. Springer, Berlin (2007)

  46. Schneider, R., Weil, W.: Translative and kinematic integral formulae for curvature measures. Math. Nachr. 129(1), 67–80 (1986)

    Article  MathSciNet  Google Scholar 

  47. Schneider, R., Weil, W.: Stochastic and Integral Geometry. Springer, Berlin (2008)

    Book  Google Scholar 

  48. Stoyan, D., Kendall, W. S., Mecke, J., Kendall, D.: Stochastic Geometry and its Applications, vol. 8. Wiley Chichester (1987)

  49. Weil, W.: Translative integral geometry. Geobild 89, 75–86 (1989)

    MathSciNet  Google Scholar 

  50. Weil, W.: Translative and kinematic integral formulae for support functions. Geom. Dedic. 57(1), 91–103 (1995)

    Article  MathSciNet  Google Scholar 

  51. Zhang, G.: A sufficient condition for one convex body containing another. Chin. Ann. Math. Ser. B 9(4), 447–451 (1988)

    Google Scholar 

  52. Zhou, J.: A kinematic formula and analogues of hadwiger’s theorem in space. Contemp. Math. 140, 159–159 (1992)

    Article  Google Scholar 

  53. Zhou, J.: When can one domain enclose another in \(r^3\)? J. Aust. Math. Soc. Ser. A 59(2), 266–272 (1995)

    Google Scholar 

  54. Zhou, J.: Sufficient conditions for one domain to contain another in a space of constant curvature. Proc. Am. Math. Soc. 126(9), 2797–2803 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

This work was performed while the authors were supported under NSF Grant IIS-1162095. We would like to thank Mr. Joshua Davis, Mr. Qianli Ma, and the anonymous reviewer for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory S. Chirikjian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Chirikjian, G.S. Closed-form characterization of the Minkowski sum and difference of two ellipsoids. Geom Dedicata 177, 103–128 (2015). https://doi.org/10.1007/s10711-014-9981-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-014-9981-3

Keywords

Mathematics Subject Classification

Navigation