Skip to main content
Log in

Local classification of singular hexagonal 3-webs with holomorphic Chern connection form and infinitesimal symmetries

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Implicit ODE, cubic in derivative, generically has no infinitesimal symmetries even at regular points with distinct roots. Cartan showed that at regular points, ODEs with hexagonal 3-web of solutions have symmetry algebras of the maximal possible dimension 3. At singular points such a web can lose all its symmetries. In this paper we study hexagonal 3-webs having at least one infinitesimal symmetry at singular points. In particular, we establish sufficient conditions for the existence of non-trivial symmetries and show that under natural assumptions such a symmetry is semi-simple, i.e. is a scaling in some coordinates. Using the obtained results, we provide a complete classification of hexagonal singular 3-web germs in the complex plane, satisfying the following two conditions: 1) the Chern connection form is holomorphic at the singular point, 2) the web admits at least one infinitesimal symmetry at this point. As a by-product, a classification of hexagonal weighted homogeneous 3-webs is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Agafonov, S.I.: On implicit ODEs with hexagonal web of solutions. J. Geom. Anal. 19(3), 481–508 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Agafonov, S.I.: Flat 3-webs via semi-simple Frobenius 3-manifolds. J. Geom. Phys. 62(2), 361–367 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Agafonov, S.I.: Frobenius 3-folds via singular flat 3-webs. SIGMA Symmetry Integrability Geom. Methods Appl. 8 (2012), 078, 15 pages, arXiv:1206.0372

  4. Agafonov, S.I.: Linearly degenerate reducible systems of hydrodynamic type. J. Math. Anal. Appl. 222(1), 15–37 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Akivis, M.A., Goldberg, V.V.: Differential geometry of webs. Handb. Differ. Geom. N.-Holl. Amsterdam 1, 1–152 (2000)

    Article  MathSciNet  Google Scholar 

  6. Blaschke, W., Bol, G.: Geometrie der Gewebe: Topologische Fragen der Differentialgeometrie. Springer, Berlin (1938)

    Google Scholar 

  7. Blaschke, W.: Einführung in die Geometrie der Waben. Birkhäuser, Basel und Stuttgart (1955)

    Book  Google Scholar 

  8. Cartan, E.: Les sous-groupes des groupes continus de transformations. Ann. Sci. l’École Norm. Sup. (3) 25, 57–194 (1908)

    MATH  MathSciNet  Google Scholar 

  9. Davydov, A.A.: The normal form of a differential equation, that is not solved with respect to the derivative, in the neighborhood of its singular point. Funktsional. Anal. i Prilozhen. 19(2), 1–10, 96 (1985)

  10. Dubrovin, B.: Geometry of 2D topological field theories. In: Integrable Systems and Quantum Groups. Lecture Notes in Mathematics, vol. 1620, pp. 120–348. Springer, Berlin (1996)

  11. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. I. Based, in Part, on Notes Left by Harry Bateman. McGraw-Hill, New York (1953)

    Google Scholar 

  12. Ferapontov, E.V.: Systems of three differential equations of hydrodynamic type with a hexagonal \(3\)-web of characteristics on solutions. Funct. Anal. Appl. 23(2), 151–153 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ferapontov, E.V.: Integration of weakly nonlinear semi-Hamiltonian systems of hydrodynamic type by the methods of web theory, (Russian). Mat. Sb. 181(9), 1220–1235 (1990). [Translation in Math. USSR-Sb. 71(1), 65–79 (1992)]

  14. Ferapontov, E.V.: Invariant description of solutions of hydrodynamic-type systems in hodograph space: hydrodynamic surfaces. J. Phys. A 35(32), 6883–6892 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Golubew, W.W.: Vorlesungen über Differentialgleichungen im Komplexen. (German) Hochschulbücher für Mathematik, Bd. 43 VEB Deutscher Verlag der Wissenschaften, Berlin (1958)

  16. Graf, H., Sauer, R.: Über dreifache Geradensysteme in der Ebene, welche Dreiecksnetze bilden, Sitzungsb. Math.-Naturw. Abt., 119–156 (1924)

  17. Hayakawa, A., Ishikawa, G., Izumiya, S., Yamaguchi, K.: Classification of generic integral diagrams and first order ordinary differential equations. Int. J. Math. 5(4), 447–489 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hénaut, A.: On planar web geometry through abelian relations and connections. Ann. Math. (2) 159(1), 425–445 (2004)

    Article  MATH  Google Scholar 

  19. Hénaut, A.: Planar web geometry through abelian relations and singularities, pp. 269–295. Inspired by S. S. Chern, Nankai Tracts Math. 11. World Scientific, Hackensack, NJ (2006)

  20. Lie, S.: Vorlesungen uber Differentialgleichungen mit bekannten infinitesimalen Transformationen (revised and edited by Dr G. Scheffers). B.G. Teubner, Leipzig (1893)

    Google Scholar 

  21. Manin, Yu.I.: Frobenius manifolds, quantum cohomology, and moduli spaces. Am. Math. Soc. Colloquium Publ. 47. American Mathematical Society, Providence, RI (1999)

  22. Marin, D., Pereira, J.V., Pirio, L.: On planar webs with infinitesimal automorphisms. Nankai Tracts Math. 11. World Scientific, Hackensack, NJ (2006)

  23. Mokhov, O.I., Ferapontov, E.V.: Associativity equations of two-dimensional topological field theory as integrable Hamiltonian nondiagonalizable systems of hydrodynamic type. Funktsional. Anal. i Prilozhen. 30(3), pp. 62–72 (1996), (Russian). [Translation in, Funct. Anal. Appl. 30(3), 195–203 (1997)]

  24. Nagy, P.: Webs and Curvature, Web Theory and Related Topics. World Scientific, River Edge, NJ (2001)

    Google Scholar 

  25. Nakai, I.: Topology of complex webs of codimension one and geometry of projective space curves. Topology 26(4), 475–504 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  26. Nakai, I.: Notes on versal deformation of first order PDEs and web structure. J. Differ. Equ. 118(2), 253–292 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  27. Nakai, I.: Web Geometry and the Equivalence Problem of the First Order Partial Differential Equations. Web Theory and Related Topics. World Scientific, River Edge, NJ (2001)

    Google Scholar 

  28. Pereira, J.V., Pirio, L.: An Invitation to Web Geometry: From Abel’s Addition Theorem to the Algebraization of Codimension One Webs. IMPA Mathematical Publications, 27th Brazilian Mathematics Colloquium, IMPA, Rio de Janeiro (2009)

  29. Saito, K.: Quasihomogene isolierte Singularitäten von Hyperflchen. (German). Invent. Math. 14, 123–142 (1971)

  30. Thom, R.: Sur les e’quations diffe’rentielles multiformes et leurs inte’grales singulie‘res. Bol. Soc. Brasil. Mat. 3(1), 1–11 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  31. Yartey, J.N.A.: Number of singularities of a generic web on the complex projective plane. J. Dyn. Control Syst. 11(2), 281–296 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author thanks the hospitality of the Institute of Mathematical and Computer Sciences of São Paulo University USP-ICMC in São Carlos, where this study was initiated, and M.A.S. Ruas in particular. This research was partially supported by CNPq Grant 454618/2009-3 and by the National Institute of Science and Technology of Mathematics INCT-Mat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey I. Agafonov.

Appendices

Appendix A: solutions to \([12+2t^2+9tU]\frac{\hbox {d}U}{\hbox {d}t}=L(4+27U^2)\)

First consider the case of a holomorphic solution \(U\). By \(T=3\sqrt{3} L\frac{f'(z)}{f(z)},\) \(U=-\frac{2 }{3\sqrt{3}}\tan (z)\) we linearize the ODE. The general solution of the linear equation \( f''-\frac{\tan (z)}{3L}f'+\frac{2}{9L^2}f=0 \) can be expressed in terms of the Legendre functions. In fact, the substitution \(f(z)=(1-x^2)^{-\frac{\mu }{2}}g(x)\), \(x=\sin z\) transforms the above equation to the Legendre equation

$$\begin{aligned} (1-x^2)g''-2xg'+\left[ \nu (\nu +1)-\frac{\mu ^2}{1-x^2} \right] g=0 \end{aligned}$$
(34)

with \(\mu =\frac{1}{2}(1-\frac{1}{3L})\), \(\nu =\frac{1}{2}(\frac{1}{L}-1)\). Thus we obtain the normal form 1) with \(U\) defined by (26).

It is easily seen that \(U(T)\) is allowed to have the pole of order 1, which corresponds to \(n_0\ge 1\), or of order 2, which corresponds to \(n_0\ge 4\). The substitution \(T=3\sqrt{3} L\frac{f'(z)}{f(z)},\) \(U=\frac{2}{3\sqrt{3} \tan (z)}, \) now brings the equation for \(U\) to

$$\begin{aligned} f''+\frac{1}{3L\tan (z)}f'+\frac{2}{9L^2}f=0. \end{aligned}$$
(35)

The singular point \(z=0\) is regular. A standard local analysis (see, for example, [15]) gives the following types of solutions.

  1. 1.

    If \(\rho :=1-\frac{1}{3L}\ne {\mathbb {Z}}\) then \(f(z)=c_1A(z)+c_2z^{\rho }B(z)\).

  2. 2.

    If \(\rho =-n\), \(n\in {\mathbb {N}}\) then \(f(z)=c_1A(z)+c_2[z^{-n}B(z)+\lambda \ln z A(z)]\).

  3. 3.

    If \(\rho =0\) then \(f(z)=c_1A(z)+c_2[\kappa \ln z A(z)+z \psi (z)]\), where \(\kappa \ne 0\) and \(\psi \) is analytic.

  4. 4.

    If \(\rho =n\), \(n\in {\mathbb {N}}\) (note that \(n>1\)) then \(f(z)=c_1z^nA(z)+c_2[C(z)+\lambda z^n \ln z B(z)]\).

In the above formulas, the functions \(A,B,C\) are analytic and non-vanishing at \(z\ne 0\), and \(\lambda \) is constant. The function \(U\) has pole of order 1 at \(z=0\) iff \(f(z)\) is analytic with \(f(0)\ne 0\), \(f'(0)=0\), \(f''(0)\ne 0\). If there is an analytic non-vanishing at \(z=0\) solution, then it automatically verifies \(f'(0)=0\), \(f''(0)\ne 0\). A solution of types 1, 2 or 3 suits iff \(c_2=0\), thus giving (27), where we use \(V=-\frac{1}{U}\). In fact, the substitution \(f(z)=(1-x^2)^{\frac{\mu }{2}}g(x)\), \(x=\cos z\) transforms Eq. (35) to the Legendre Eq. (34). For the solutions of the type 4, an analysis of series expansions of the functions \(P^{\mu }_{\nu }(z), Q^{\mu }_{\nu }(z)\) at \(z=1\) (see, for instance, [11]) shows that always holds true \(\lambda =0\) for odd \(n\), and \(\lambda \ne 0\) for even \(n\). Therefore a solution with desired properties exists only for odd \(n\) and is of the form

$$\begin{aligned} f(z)=\sin ^{\mu } (z)[C_1P^{\mu }_{\nu }(\cos z)+ C_2Q^{\mu }_{\nu }(\cos z)] \end{aligned}$$
(36)

where \(C_1,C_2\) are chosen to guarantee \(c_2\ne 0\). By Lemma 6 all corresponding 3-webs are equivalent, thus one can choose \(C_2=0\) and get (27).

The function \(U\) has pole of order 2 at \(z=0\) iff \(f(z)\) is of the type 1 with \(c_1\ne 0\), \(c_2\ne 0\). Therefore \(L= -\frac{2}{3}\) and the solution is of the form (36). Due to Lemma 6 all corresponding ODEs are equivalent and we can choose \(C_1=C_2=1.\) This gives (28).

Appendix B: tables of invariants

Elliptic case

#

\(\alpha ,\beta \)

\(\mu \)

\([w_1:w_2]\)

\(\Delta \)

\([\gamma ]\)

1

\(\scriptstyle 1-\dfrac{n_0}{2}, 1+\frac{m_0}{2}\)

2

\(\scriptstyle [m_0+2:2-n_0]\)

\(\scriptstyle x^{n_0}y^{m_0}\)

\(\frac{n_0}{2}\frac{\hbox {d}x}{x}\)

1

\(\scriptstyle 1+\dfrac{n_0}{2}, 1-\frac{m_0}{2}\)

3

\(\scriptstyle [2-m_0:n_0+2]\)

\(\scriptstyle x^{n_0}y^{m_0}\)

\(\frac{n_0}{2}\frac{\hbox {d}x}{x}+\frac{m_0\hbox {d}y}{y}\)

2

\(\scriptstyle 1+\dfrac{n_0}{3}, 1-\frac{m_0}{2}\)

3

\(\scriptstyle [2-m_0:n_0+3]\)

\(\scriptstyle x^{n_0}y^{m_0}(4x^{3+n_0}+27y^{2-m_0})\)

\(\frac{n_0}{3}\frac{\hbox {d}x}{x}+\frac{m_0\hbox {d}y}{y}+\frac{\hbox {d}\ln (4x^{3+n_0}+27y^{2-m_0})}{2}\)

3

\(\scriptstyle 1+\dfrac{n_0}{3}, 1-\frac{m_0}{2}\)

3

\(\scriptstyle [2-m_0:n_0+3]\)

\(\scriptstyle x^{n_0}y^{m_0}(32x^{3+n_0}+27y^{2-m_0})\)

\(\frac{n_0}{3}\frac{\hbox {d}x}{x}+\dfrac{m_0\hbox {d}y}{y}\)

4

\(\scriptstyle 1+\dfrac{n_0}{2}, 1\)

3

\(\scriptstyle [1:n_0+2]\)

\(\scriptstyle yx^{n_0}(12y+\lambda x^{2+n_0})\)

\(\frac{n_0}{2}\frac{\hbox {d}x}{x}+\frac{2}{3}\frac{\hbox {d}y}{y}+\dfrac{\hbox {d}\ln (12y+\lambda x^{2+n_0})}{2}\)

5

\(\scriptstyle 1+\dfrac{n_0}{2}, 1\)

3

\(\scriptstyle [1:n_0+2]\)

\(\scriptstyle yx^{n_0}(3y+\lambda x^{2+n_0})\)

\(\frac{n_0}{2}\frac{\hbox {d}x}{x}+\frac{2}{3}\frac{\hbox {d}y}{y}\)

6

\(\scriptstyle 1+\dfrac{n_0}{2}, 1\)

3

\(\scriptstyle [1:n_0+2]\)

\(\scriptstyle x(x^{2+n_0}-6\lambda y)(x^{2+n_0}-3\lambda y)\)

\(\frac{2n_0+1}{3}\frac{\hbox {d}x}{x}+\frac{\hbox {d}\ln (x^{2+n_0}-6\lambda y)}{2}\)

7

\(\scriptstyle 1+\dfrac{n_0}{2}, 1\)

3

\(\scriptstyle [1:n_0+2]\)

\(\scriptstyle x^{n_0}(x^{2+n_0} -12\lambda y)(x^{2+n_0}-3\lambda y)\)

\(\frac{n_0}{2}\frac{\hbox {d}x}{x}+\frac{\hbox {d}\ln (x^{2+n_0}-12\lambda y)}{2}\)

8

\(\scriptstyle 1+\dfrac{n_0}{2}, 1\)

3

\(\scriptstyle [1:n_0+2]\)

\(\scriptstyle x^{n_0}(x^{2+n_0} -3\lambda y)(2x^{2+n_0}+3\lambda y)\)

\(\frac{n_0}{2}\frac{\hbox {d}x}{x}\)

9

\(\scriptstyle 1+\dfrac{n_0}{2}, 1\)

3

\(\scriptstyle [1:n_0+2]\)

\(\scriptstyle x^{n_0}(x^{2+n_0} +6\lambda y)(x^{2+n_0}-3\lambda y)\)

\(\scriptstyle \frac{n_0}{2}\frac{\hbox {d}x}{x}\,\,+\,\,\frac{\hbox {d}\ln (x^{2+n_0}+6\lambda y)}{2}+{\scriptstyle \hbox {d}\ln (x^{2+n_0}-3\lambda y)}\)

10

\(\scriptstyle 1+\dfrac{n_0}{2}, 1\)

3

\(\scriptstyle [1:n_0+2]\)

\(\scriptstyle x^{n_0}(x^{2+n_0} +\lambda y)(x^{4+2n_0}+2\lambda x^{2+n_0}y+4\lambda ^2 y^2)\)

\(\frac{n_0}{2}\frac{\hbox {d}x}{x}\,\,+\,\,\frac{\hbox {d}\ln (x^{4+2n_0}+2\lambda x^{2+n_0}y+4\lambda ^2 y^2)}{2}\)

11

\(\scriptstyle 1\,\,+\,\,\dfrac{n_0}{2}, 1\)

3

\(\scriptstyle [1:n_0+2]\)

\(\scriptstyle x^{n_0}(x^{2+n_0} -\lambda y)(x^{2+n_0}\,\,+\,\,\lambda y)\)

\(\frac{n_0}{2}\frac{\hbox {d}x}{x}\,\,+\,\,\frac{\hbox {d}\ln (x^{2+n_0}+\lambda y)}{3}\)

12

\(\scriptstyle 1+\dfrac{n_0}{2}, 1\)

3

\(\scriptstyle [1:n_0+2]\)

\(\scriptstyle x^{n_0}(x^{2+n_0} +4\lambda y)(x^{2+n_0}+2\lambda y)\)

\(\scriptstyle \frac{n_0}{2}\frac{\hbox {d}x}{x}\,\,+\,\,\dfrac{\hbox {d}\ln (x^{2+n_0}+4\lambda y)}{2}\,\,+\,\,\frac{\hbox {d}\ln (x^{2+n_0}+2\lambda y)}{3}\)

13

\(\scriptstyle 1+\dfrac{n_0}{2}, 1\)

3

\(\scriptstyle [1:n_0+2]\)

\(\scriptstyle x^{n_0}(x^{2+n_0} -4\lambda y)(x^{4+2n_0}-2\lambda x^{2+n_0}y-2\lambda ^2 y^2)\)

\(\scriptstyle \frac{n_0}{2}\frac{\hbox {d}x}{x}\,\,+\,\,\frac{\hbox {d}\ln (x^{2+n_0}-4\lambda y)}{2}\)

14

\(\scriptstyle 1+\dfrac{n_0}{3}, 1\)

3

\(\scriptstyle [1:n_0+3]\)

\(\scriptstyle yx^{n_0}(x^{3+n_0} -27\lambda y)\)

\(\scriptstyle \frac{n_0}{3}\frac{\hbox {d}x}{x}\,\,+\,\,\frac{2}{3}\frac{\hbox {d}y}{y}+\hbox {d}\ln (x^{3+n_0}-27\lambda y)\)

15

\(\scriptstyle 1+\dfrac{n_0}{3}, 1\)

3

\(\scriptstyle [1:n_0+3]\)

\(\scriptstyle yx^{n_0}(2x^{3+n_0} +27\lambda y)(x^{3+n_0} \,\,+\,\,54\lambda y)\)

\(\scriptstyle \frac{n_0}{3}\frac{\hbox {d}x}{x}\,\,+\,\,\dfrac{2}{3}\frac{\hbox {d}y}{y}+\frac{\hbox {d}\ln (x^{3+n_0}+54\lambda y)}{2}\)

16

\(\scriptstyle 1+\dfrac{n_0}{3}, 1\)

3

\(\scriptstyle [1:n_0+3]\)

\(\scriptstyle yx^{n_0}(8x^{3+n_0} +27\lambda y)\)

\(\scriptstyle \frac{n_0}{3}\frac{\hbox {d}x}{x}\,\,+\,\,\frac{2}{3}\frac{\hbox {d}y}{y}\)

17

\(\scriptstyle 1+\dfrac{n_0}{3}, 1\)

3

\(\scriptstyle [1:n_0+3]\)

\(\scriptstyle x^{n_0}(2x^{3+n_0}- 9\lambda y)(2x^{3+n_0}-27 \lambda y)\)

\(\scriptstyle \frac{n_0}{3}\frac{\hbox {d}x}{x}\,\,+\,\,\dfrac{\hbox {d}\ln (2x^{3+n_0}-9\lambda y)}{2}+\frac{\hbox {d}\ln (2x^{3+n_0}-27\lambda y)}{2}\)

18

\(\scriptstyle 1+\dfrac{n_0}{3}, 1\)

3

\(\scriptstyle [1:n_0+3]\)

\(\scriptstyle x^{n_0}(25x^{3+n_0}- 18\lambda y)(25x^{3+n_0}+27 \lambda y)\)

\(\scriptstyle \frac{n_0}{3}\frac{\hbox {d}x}{x}\,\,+\,\,\dfrac{\hbox {d}\ln (25x^{3+n_0}-18\lambda y)}{2}\)

19

\(\scriptstyle 1+\dfrac{n_0}{3}, 1\)

3

\(\scriptstyle [1:n_0+3]\)

\(\scriptstyle x^{n_0}(x^{3+n_0}- 3\lambda y)(2x^{3+n_0}+3 \lambda y)\)

\(\scriptstyle \frac{n_0}{3}\frac{\hbox {d}x}{x}\,\,+\,\,\dfrac{\hbox {d}\ln (x^{3+n_0}-3\lambda y)}{3}\)

20

\(\scriptstyle 1+\dfrac{n_0}{3}, 1\)

3

\(\scriptstyle [1:n_0+3]\)

\(\scriptstyle x^{n_0}(4x^{3+n_0}- 75\lambda y)(4x^{3+n_0}+15\lambda y)(x^{3+n_0}-30\lambda y)\)

\(\scriptstyle \dfrac{n_0}{3}\frac{\hbox {d}x}{x}+\frac{\hbox {d}\ln (x^{3+n_0}-30\lambda y)}{2}+\dfrac{\hbox {d}\ln (4x^{3+n_0}-75\lambda y)}{3}\)

21

\(\scriptstyle 1+\dfrac{n_0}{3}, 1\)

3

\(\scriptstyle [1:n_0+3]\)

\(\scriptstyle x^{n_0}(x^{3+n_0}+27\lambda y)(x^{3+n_0}-9\lambda y)\)

\(\scriptstyle \frac{n_0}{3}\frac{\hbox {d}x}{x}+\dfrac{\hbox {d}\ln (x^{3+n_0}+27\lambda y)}{2}+\frac{3}{2}\hbox {d}\ln (x^{3+n_0}-9\lambda y)\)

22

\(\scriptstyle 1+\dfrac{n_0}{3}, 1\)

3

\(\scriptstyle [1:n_0+3]\)

\(\scriptstyle x^{n_0}(x^{3+n_0}-18\lambda y)(2x^{3+n_0}-27\lambda y)(4x^{3+n_0}+9\lambda y)\)

\(\scriptstyle \dfrac{n_0}{3}\frac{\hbox {d}x}{x}+\frac{\hbox {d}\ln (x^{3+n_0}-18\lambda y)}{2}\)

23

\(\scriptstyle 1+\dfrac{n_0}{3}, 1\)

3

\(\scriptstyle [1:n_0+3]\)

\(\scriptstyle x^{n_0}(8x^{3+n_0}-27\lambda y)(8x^{3+n_0}+9\lambda y)\)

\(\scriptstyle \frac{n_0}{3}\frac{\hbox {d}x}{x}\)

24

\(\scriptstyle 1+\dfrac{n_0}{3}, 1\)

3

\(\scriptstyle [1:n_0+3]\)

\(\scriptstyle x^{n_0}(x^{3+n_0}+9\lambda y)(x^{6+2n_0}+36\lambda x^{3+n_0}y+972\lambda ^2 y^2)\)

\(\scriptstyle \dfrac{n_0}{3}\frac{\hbox {d}x}{x}+\frac{\hbox {d}\ln (x^{6+2n_0}+36\lambda x^{3+n_0}y+972\lambda ^2 y^2)}{2}\)

25

\(\scriptstyle 1+\dfrac{n_0}{3}, 1\)

3

\(\scriptstyle [1:n_0+3]\)

\(\scriptstyle x^{n_0}(x^{3+n_0}-216\lambda y)(x^{3+n_0}-144\lambda y)\)

\(\scriptstyle \frac{n_0}{3}\frac{\hbox {d}x}{x}+\dfrac{3}{2}\hbox {d}\ln (x^{3+n_0}-144\lambda y)\)

26

\(\scriptstyle 1+\dfrac{n_0}{3}, 1\)

3

\(\scriptstyle [1:n_0+3]\)

\(\scriptstyle x^{n_0}(25x^{3+n_0}+432\lambda y)(25x^{3+n_0}+72\lambda y)\)

\(\scriptstyle \frac{n_0}{3}\frac{\hbox {d}x}{x}+\dfrac{\hbox {d}\ln (25x^{3+n_0}+432\lambda y)}{2}\)

Parabolic case

#

\(\mu \)

\([w_1:w_2]\)

\(\Delta \)

\([\gamma ]\)

\([i^3:j^2]\)

1

3

\([0:1]\)

\(yx^N=0\)

\(\frac{N}{3}\frac{\hbox {d}x}{x} + 2\frac{\hbox {d}y}{y}\)

\([0:1]\)

2

3

\([0:1]\)

\(yx^N=0\)

\(\frac{N}{2}\frac{\hbox {d}x}{x}+\left( 2-\frac{L_0(N+2)}{2\sqrt{3}}\right) \frac{\hbox {d}y}{y} \)

\([1:\frac{\tan ^2(L_1)}{-27}]\)

3

3

\([0:1]\)

\(yx^N=0\)

\(\frac{N}{3}\frac{\hbox {d}x}{x} + \left( 2-\frac{L_0(N+3)}{2\sqrt{3}}\right) \frac{\hbox {d}y}{y}\)

\([0:1]\)

4

2

\([0:1]\)

\(x^2y^{N}=0\)

\(\frac{\hbox {d}x}{x}\)

 

Hyperbolic case

#

\(\mu \)

\([w_1:w_2]\)

\(\Delta \)

\([\gamma ]\)

\([i^3:j^2]\)

1

3

\([-(m_0+1):n_0+2]\)

\(yx^{n_0}=0\)

\( \frac{n_0}{2}\frac{\hbox {d}x}{x}+\left\{ 2+\left( \frac{L}{2}+1\right) (1+m_0)\right\} \frac{\hbox {d}y}{y} \)

\([1:\frac{U^2(0)}{-4}]\)

2

3

\([-(m_0+1):n_0+3]\)

\(yx^{n_0}=0\)

\( \frac{n_0}{3}\frac{\hbox {d}x}{x}+\left\{ 2+\left( \frac{L}{2}+\frac{5}{6}\right) (1+m_0)\right\} \frac{\hbox {d}y}{y} \)

\([0:1]\)

2.2

3

\([-(m_0+1):n_0+3]\)

\(yx^{n_0-3}=0\)

\( \frac{n_0-3}{6}\frac{\hbox {d}x}{x}+\frac{m_0+7}{3}\frac{\hbox {d}y}{y} \)

\([0:1]\)

3

2

\([-(m_0+2):n_0+1]\)

\(xy^{m_0}=0\)

\(\frac{n_0+3}{2}\frac{\hbox {d}x}{x}\)

 

4

2

\([-(m_0+1):n_0+1]\)

\(xy=0\)

\(\left( 1+\frac{(n_0+1)(l_0+3)}{2}\right) \frac{\hbox {d}x}{x}+(1+l_0)(1+m_0)\frac{\hbox {d}y}{y}\)

 

Comments on the hyperbolic case: for \(L=0\) one has \(U\equiv 0\), the case 2.2 corresponds to \(L=-\frac{2}{3}\).

In the table for elliptic case we add the exponents \(\alpha ,\beta \) generating normal forms from the corresponding ”basic” equation of Theorem 6. Some comments:

  1. 1)

    If \(n_0\) or \(m_0\) comes with the negative sign in the formulas for \(\alpha \) or \(\beta \) then \(n_0\le 1\) or \(m_0\le 1\) respectively.

  2. 2)

    \(\lambda \) is a non-vanishing constant (its value can be easily computed).

  3. 3)

    The invariant \([i^3:j^2]\) is used only once to distinguish between the forms 18) and 26).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agafonov, S.I. Local classification of singular hexagonal 3-webs with holomorphic Chern connection form and infinitesimal symmetries. Geom Dedicata 176, 87–115 (2015). https://doi.org/10.1007/s10711-014-9960-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-014-9960-8

Keywords

Mathematics Subject Classification (2010)

Navigation