Skip to main content
Log in

Asymptotic linearity of the mapping class group and a homological version of the Nielsen–Thurston classification

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We study the action of the mapping class group on the integral homology of finite covers of a topological surface. We use the homological representation of the mapping class to construct a faithful infinite-dimensional representation of the mapping class group. We show that this representation detects the Nielsen–Thurston classification of each mapping class. We then discuss some examples that occur in the theory of braid groups and develop an analogous theory for automorphisms of free groups. We close with some open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen J.E.: Asymptotic faithfulness of the quantum SU(n) representations of the mapping class groups. Ann Math 163(1), 347–368 (2006)

    Article  MATH  Google Scholar 

  2. Band, G., Boyland, P.: The Burau estimate for the entropy of a braid. Available at arXiv:math/0612716 (2006)

  3. Bass, H., Lubotzky, A.: Linear-central filtrations on groups. In: The Mathematical Legacy of Wilhelm Magnus: Groups, Geometry and Special Functions. Contemporary of Mathematics, vol. 169, pp. 45–98 (1994)

  4. Bestvina, M.: A Bers-like proof of the existence of trans tracks for free group automorphisms. arXiv:1001.0325v1 [math.GR] (2010)

  5. Bestvina M., Handel M.: Train tracks and automorphisms of free groups. Ann. Math. 135, 1–51 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bigelow S.J.: Braid groups are linear. J. Am. Math. Soc. 14(2), 471–486 (2001) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bigelow S.J.: The Burau representation is not faithful for n = 5. Geom. Topol. 3, 397–404 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bigelow S.J., Budney R.D.: The mapping class group of a genus two surface is linear. Algebr. Geom. Topol. 1, 699–708 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Casson, A.J., Bleiler, S.A.: Automorphisms of Surfaces After Nielsen and Thurston. London Mathematical Society Student Texts, vol. 9 (1988)

  10. Chevalley C., Weil A.: Über das Verhalten der Integrale 1. Gattung bei Automorphismen des Funktionenkörpers. Abh. Math. Sem. Univ. Hamburg 10, 358–361 (1934)

    Article  Google Scholar 

  11. Daniel T.W.: A residually finite version of Rips’ construction. Bull. Lond. Math. Soc. 35(1), 23–29 (2003)

    Article  MATH  Google Scholar 

  12. Fathi, A., Laudenbach, F., Poénaru, V.: Travaux de Thurston sur les Surfaces. Soc. Math. de France, Paris, Astérisque 66–67 (1979)

  13. Farb, B. (ed.): Problems on mapping class groups and related topics. Proc. Symp. Pure Appl. Math. 74 (2006)

  14. Farb, B., Margalit, D.: A Primer on the Mapping Class Group. To be published by Princeton University Press (2011)

  15. Formanek E., Procesi C.: The automorphism group of a free group is not linear. J. Algebra 149(2), 494–499 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Grossman E.K.: On the residual finiteness of certain mapping class groups. J. Lond. Math. Soc. 9, 160–164 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hironaka E., Kin E.: A family of pseudo-Anosov braids with small dilatation. Algebr. Geom. Topol 6, 699–738 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kazhdan, D.A.: On arithmetic varieties. In: Lie Groups and Their Representations (Proceedings of Summer School, Bolyai Janos Mathematical Society, Budapest, 1971), pp. 151–217, Halsted (1975)

  19. Koberda, T., Silberstein, A.M.: Representations of Galois groups on the homology of surfaces. arXiv:0905.3002

  20. Lyndon, R.C., Schupp, P.E.: Combinatorial Group Theory. Springer, New York (1977), reprint in (2001)

  21. Malestein J.: Pseudo-anosov homeomorphisms and the lower central series of a surface group. Algebr. Geom. Topol. 7, 1921–1948 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. McMullen, C.T.: Entropy on Riemann surfaces and the Jacobians of finite covers. Preprint (2010)

  23. Rhodes J.A.: Sequences of metrics on compact Riemann surfaces. Duke Math. J. 72, 725–738 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Koberda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koberda, T. Asymptotic linearity of the mapping class group and a homological version of the Nielsen–Thurston classification. Geom Dedicata 156, 13–30 (2012). https://doi.org/10.1007/s10711-011-9587-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-011-9587-y

Keywords

Mathematics Subject Classification (2010)

Navigation