Skip to main content
Log in

Twisted conjugacy classes in symplectic groups, mapping class groups and braid groups (with an appendix written jointly with Francois Dahmani)

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We prove that the symplectic group \({Sp(2n,\mathbb{Z})}\) and the mapping class group Mod S of a compact surface S satisfy the R property. We also show that B n (S), the full braid group on n-strings of a surface S, satisfies the R property in the cases where S is either the compact disk D, or the sphere S 2. This means that for any automorphism \({\phi}\) of G, where G is one of the above groups, the number of twisted \({\phi}\)-conjugacy classes is infinite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arthur, J., Clozel, L.: Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula. Princeton University Press, Princeton (1989) (MR90m:22041)

  2. Bleak, C., Fel’shtyn, A., Gonçalves, D.L.: Twisted conjugacy classes. In: R. Thompson’s group F (eds.) Pacific Journal of Mathematics 238, 1–6 (2008)

  3. Bowditch B.: Intersection numbers and the hyperbolicity of the curve complex. J. Reine Angew. Math. 598, 105–131 (2006)

    MATH  MathSciNet  Google Scholar 

  4. Bridson M., Vogtmann K.: Automorphisms of automorphism groups of free group. J. Algebra 229, 785–792 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Druţu, C.: Relatively hyperbolic groups: geometry and quasi-isometric invariance. E-print arXiv: math.GR/0605211

  6. Dyer J.L., Grossman E.K.: The automorphism groups of the braid groups. Amer. J. Math. 103(6), 1151–1169 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dyer J., Formanek E.: The automorphism group of free group is complete. J. Lond. Math. Soc. II. Ser. 11, 181–190 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fel’shtyn, A.: Dynamical zeta functions, Nielsen theory and Reidemeister torsion. Mem. Amer. Math. Soc. 147(699), (2000) (xii+146. MR2001a:37031)

    Google Scholar 

  9. Fel’shtyn A.L.: The Reidemeister number of any automorphism of a Gromov hyperbolic group is infinite. Zapiski Nauchnych Seminarov POMI 279, 229–241 (2001)

    Google Scholar 

  10. Fel’shtyn, A.L., Gonçalves, D.L.: Reidemeister numbers of any automorphism of Baumslag–Solitar group is infinite. Geometry and Dynamics of Groups and Spaces. Prog Math 265, 286–306 (2008) (Birkhauser)

    Google Scholar 

  11. Fel’shtyn A.L., Hill R.: The Reidemeister zeta function with applications to Nielsen theory and a connection with Reidemeister torsion. K-theory 8(4), 367–393 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fel’shtyn A., Troitsky E.: Geometry of Reidemeister classes and twisted Burnside theorem. J K-Theory 2(3), 405–445 (2008)

    MathSciNet  Google Scholar 

  13. Fel’shtyn A., Troitsky E.: Twisted Burnside–Frobenius theory for discrete groups. J. Reine Angew. Math. 613, 193–210 (2007)

    MATH  MathSciNet  Google Scholar 

  14. Fel’shtyn A.L., Troitsky E.: Twisted Burnside Theorem for Countable Groups and Reidemeister Numbers, Noncommutative Geometry and Number Theory, pp. 141–154. Vieweg, Braunschweig (2006)

    Google Scholar 

  15. Fel’shtyn A., Troitsky E., Vershik A.: Twisted Burnside theorem for type II1 groups: an example. Math Res Lett 13(5), 719–728 (2006)

    MATH  MathSciNet  Google Scholar 

  16. Fel’shtyn A., Leonov Y., Troitsky E.: Reidemeister numbers of saturated weakly branch groups. Geometria Dedicata 134, 61–73 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fel’shtyn, A.: New directions in Nielsen–Reidemeister theory. (E-print arxiv: math.GR/0712.2601)

  18. Gonçalves D.L.: The coincidence Reidemeister classes on nilmanifolds and nilpotent fibrations. Top. Appl. 83, 169–186 (1998)

    Article  MATH  Google Scholar 

  19. Gonçalves, D.L., Guaschi, J.: The lower central and derived series of the braid groups B n (S 2) and \({B_m(S^2\setminus\{x_1,\ldots,x_n\})}\), preprint, March (2006)

  20. Gonçalves D.L., Wong P.: Twisted conjugacy classes in wreath products. Int. J. Algebra Comput. 16(5), 875–886 (2006)

    Article  MATH  Google Scholar 

  21. Grothendieck, A.: Formules de Nielsen–Wecken et de Lefschetz en géométrie algébrique, Séminaire de Géométrie Algébrique du Bois-Marie 1965–1966. SGA 5. Lecture Notes in Mathematics, vol. 569, Springer, Berlin, pp. 407–441 (1977)

  22. Hua L.K., Reiner I.: Automorphisms of the unimodular group. Trans. Amer. Math. Soc. 71, 331–348 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ivanov N.V.: Automorphisms of Teichm uller Modular Groups, Lecture Notes in Mathematics 1346. Springer, Berlin (1988)

    Google Scholar 

  24. Jiang B.: Lectures on Nielsen Fixed Point Theory, Contemporary Mathematics, vol 14. American Mathematical Society, Providence (1983)

    Google Scholar 

  25. Khramtsov, D.G.: Completeness of groups of outer automorphisms of free groups. In Group-Theoretic Investigations(Russian), pp. 128–143, Akad. Nauk SSSR Ural. Otdel., Sverdlovsk. (1990)

  26. Levitt, G.: On the automorphism group of generalised Baumslag–Solitar groups. (2005) ((E-print arxiv:math.GR/0511083))

  27. Levitt G., Lustig M.: Most automorphisms of a hyperbolic group have very simple dynamics. Ann. Scient. Éc. Norm. Sup. 33, 507–517 (2000)

    MATH  MathSciNet  Google Scholar 

  28. Magnus W., Karrass A., Solitar D.: Combinatorial Group Theory. Interscience Publishers, New York (1966)

    MATH  Google Scholar 

  29. Masur H.A., Minsky Y.N.: Geometry of the complex of curves I: hyperbolicity. Invent. Math. 138, 103–149 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. Newmann M.: Integral Matrices. Academic Press, New York (1972)

    Google Scholar 

  31. Reidemeister K.: Automorphismen von Homotopiekettenringen. Math. Ann. 112, 586–593 (1936)

    Article  MathSciNet  Google Scholar 

  32. Reiner I.: Automorphisms of the symplectic modular group. Trans. Amer. Math. Soc. 80, 35–50 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  33. Scott G.P.: Braid groups and the group of homeomorphisms of a surface. Proc. Camb. Phil. Soc. 68, 605–617 (1970)

    Article  MATH  Google Scholar 

  34. Shokranian, S.: The Selberg–Arthur trace formula, vol 1503. Lecture Notes in Mathematics. Springer, Berlin. Based on lectures by James Arthur. MR1176101 (93j:11029) (1992)

  35. Taback, J., Wong, P.: Twisted conjugacy and quasi-isometry invariance for generalized solvable Baumslag–Solitar groups (2006) (E-print arxiv:math.GR/0601271)

  36. Taback, J., Wong, P.: A note on twisted conjugacy and generalized Baumslag–Solitar groups. (2006) (E-print arXiv:math.GR/0606284)

  37. Troitsky, E.: Noncommutative Riesz theorem and weak Burnside type theorem on twisted conjugacy. Funct. Anal. Pril. 40(2), 44–54 (2006) [In Russian, English translation: Funct. Anal. Appl. 40(2), 117–125 (2006) (Preprint 86 (2004), Max-Planck-Institut für Mathematik, math.OA/0606191)]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Fel’shtyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fel’shtyn, A., Gonçalves, D.L. Twisted conjugacy classes in symplectic groups, mapping class groups and braid groups (with an appendix written jointly with Francois Dahmani). Geom Dedicata 146, 211–223 (2010). https://doi.org/10.1007/s10711-009-9434-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-009-9434-6

Keywords

Mathematics Subject Classification (2000)

Navigation