Skip to main content
Log in

The structure of two-parabolic space: parabolic dust and iteration

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

A non-elementary Möbius group generated by two-parabolics is determined up to conjugation by one complex parameter and the parameter space, the parameter space for representations of groups generated by two parabolics into \({PSL(2, \mathbb{C})}\) modulo conjugacy, has been extensively studied. In this paper, we use the results of Gilman and Waterman to obtain an additional structure for the parameter space, which we term the two-parabolic space. This structure allows us to identify groups that contain additional conjugacy classes of primitive parabolics, which we call parabolic dust groups, non-free groups off the real axis, and groups that are both parabolic dust and non-free; some of these contain \({\mathbb{Z} \times \mathbb{Z}}\) subgroups. The structure theorem also attaches additional geometric structure to discrete and non-discrete groups lying in given regions of the parameter space and allows a new explicit geometric construction of some non-classical T-Schottky groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agol, I.: Classification of non-free 2-parabolic generator Kleinian groups. Austin AMS mtg., Budapest Bolyai conference. Notes at http://www2.math.uic.edu/agol/parabolic/parabolic01.html

  2. Bamberg, J. Non-free points in groups generated by a pair of 2 × 2 matrices. J. London Math. Soc. (2) 62 no. 3, 795–801 (2000)

    Google Scholar 

  3. Beardon, A.: Pell’s equation and two generator free Möbius Groups. Bull. London Math. Soc. 25(6), 527– (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beardon, A.: Some remarks on non-discrete Möbius groups. Ann. Acad. Sci. Fenn. 21, 69– (1996)

    MATH  MathSciNet  Google Scholar 

  5. Bishop, C., Jones, P.: Hausdorff dimension and Kleinian groups. Acta Math. 179(1), 1– (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bonk, M., Kleiner, B., Merenkov, S.: Rigidity of Schottky sets. preprint (2007)

  7. Chang, B., Jennings, S.A., Ree, R.: On certains pairs of matrices which generate free groups. Can. J. Math. 10, 279– (1958)

    MATH  MathSciNet  Google Scholar 

  8. Doyle, P.: On the Bass note of a Schottky group. Acta Math. 160, 249– (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gehring, F.W., Machlachlan, C., Martin, G.J.: Two-generator arithmetic Kleinian groups, II. Bull. London Math. Soc. 30, 258– (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gilman, J., Waterman, P.: Classical T-Schottky groups. J. D’Analyse xcviii, 1– (2006)

    MathSciNet  Google Scholar 

  11. Gilman, J.: Boundaries for two parabolic Schottky groups. Spaces of Kleinian Groups, LMS Lecture Notes, vol. 329, pp. 283–299. Cambridge U. Press (2004)

  12. Gilman, J.: Informative words and discreteness. Am. Math. Soc. Contemp. Math. 421, 147– (2007)

    MathSciNet  Google Scholar 

  13. Gilman, J., Keen, L.: Word sequence and intersection numbers. Am. Math. Soc. Cont. Math. 311, 331– (2002)

    MathSciNet  Google Scholar 

  14. Ignativ, Ju.A.: Rational non-free points in the complex plane in Algorithmic problems in the theory of groups and semigroups. Tulsk. Gos. Ped. Inst. Tula 127, 72– (1986)

    Google Scholar 

  15. Ignativ, Ju.A.: Rational non-free points in the complex plane, II in Algorithmic problems in the theory of groups and semigroups. Tulsk. Gos. Ped. Inst. Tula 53–59 (1990)

  16. Jørgensen, T.: On discrete groups of Möbius transformations. Am. J. 98(3), 739– (1976)

    MATH  Google Scholar 

  17. Keen, L., Series, C.: The Riley slice of Schottky space. Proc. London Math. Soc. 69, 72– (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lyndon, R., Ullman, J.: Groups generated by two parabolic fractional linear transformation. Can. J. Math. 21, 1388– (1969)

    MATH  MathSciNet  Google Scholar 

  19. Marden, A.: Geometrically finite Kleinian Groups and their deformation Spaces. In: Harvey, W.J. (ed.) Discontinuous Groups and Automorphic Functions, pp. 261–293. Academic Press (1977)

  20. Maskit, B.: Kleinian Groups. Springer-Verlag (1988)

  21. Mumford, D., Series, C., Wright, D.: Indra’s Pearls. Cambridge University Press (2002)

  22. Ratcliffe, J.: Foundations of Hyperbolic Manifolds. Springer-Verlag (1994)

  23. Ree, R.: On certain pairs of matrices which do not generate a free group. Can. Math. Bull. 4, 49– (1961)

    MATH  MathSciNet  Google Scholar 

  24. Tan, E.-C., Tan, S.-P.: Quadratic diophantine equations and two generator Möbius groups. J. Aust. Math. Soc. Ser. A 61, 360– (1996)

    Article  MATH  Google Scholar 

  25. Wilker, J.B.: Inversive geometry in The Geometric Vein. Springer, New York-Berlin 379–442 (1981)

  26. Wright, D.J.: Searching for the cusp. Spaces of Kleinian Groups, LMS Lecture Notes, vol. 329, pp. 1–36. Cambridge U. Press (2004)

  27. Yamamoto, Hiro-o: An example of a nonclassical Schottky group. Duke Math. J. 63, 193– (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane Gilman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilman, J. The structure of two-parabolic space: parabolic dust and iteration. Geom Dedicata 131, 27–48 (2008). https://doi.org/10.1007/s10711-007-9215-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-007-9215-z

Keywords

Mathematical Subject Classification (2000)

Navigation