Skip to main content
Log in

The symplectomorphism group of a blow up

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We study the relation between the symplectomorphism group Symp M of a closed connected symplectic manifold M and the symplectomorphism and diffeomorphism groups Symp \(\widetilde{M}\) and Diff \(\widetilde{M}\) of its one point blow up \(\widetilde{M}\) . There are three main arguments. The first shows that for any oriented M the natural map from \(\pi_1(M)\) to \(\pi_0({\rm Diff}\widetilde{M})\) is often injective. The second argument applies when M is simply connected and detects nontrivial elements in the homotopy group \(\pi_1({\rm Diff}\widetilde{M})\) that persist into the space of self-homotopy equivalences of \(\widetilde{M}\) . Since it uses purely homological arguments, it applies to c-symplectic manifolds (M, a), that is, to manifolds of dimension 2n that support a class \(a\in H^2(M;{\mathbb{R}})\) such that \(a^n\ne 0\) . The third argument uses the symplectic structure on M and detects nontrivial elements in the (higher) homology of BSymp, M using characteristic classes defined by parametric Gromov–Witten invariants. Some results about many point blow ups are also obtained. For example we show that if M is the four-torus with k-fold blow up \(\widetilde{M}_k\) (where k >  0) then \(\pi_1({\rm Diff} \widetilde{M}_k)\) is not generated by the groups \(\pi_1\left({\rm Symp}\, (\widetilde{M}_k, \widetilde{\omega})\right)\) as \(\widetilde{\omega}\) ranges over the set of all symplectic forms on \(\widetilde{M}_k\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abreu M., McDuff D. (2000). Topology of symplectomorphism groups of rational ruled surfaces, SG/9910057. J. Am. Math. Soc. 13: 971–1009

    Article  MATH  MathSciNet  Google Scholar 

  2. Baldridge S. (2004). Seiberg–Witten vanishing theorem for S 1-manifolds with fixed points. Pacific J. Math. 217: 1–10

    MATH  MathSciNet  Google Scholar 

  3. Blanchard A. (1956). Sur les variétés analytiques complexes. Ann. Sci. Ec. Norm. Sup. 73(3): 157–202

    MATH  MathSciNet  Google Scholar 

  4. Buse O. (2005). Relative family Gromov–Witten invariants and symplectomorphisms, SG/01110313. Pac. J. Math. 218: 315–341

    Article  MATH  MathSciNet  Google Scholar 

  5. Buse, O.: Whitehead products in symplectomorphism groups and Gromov–Witten invariants, SG/0411108

  6. Gottlieb D. (1965). A certain subgroup of the fundamental group. Am. J. Math. 87: 840–856

    Article  MATH  MathSciNet  Google Scholar 

  7. Gottlieb, D.: Self coincidence numbers and the fundamental group, AT/0702236

  8. Kȩdra J. (2005). Evaluation fibrations and topology of symplectomorphisms. Proc. Am. Math. Soc 133: 305–312

    Article  Google Scholar 

  9. Kȩdra, J.: Fundamental group of Symp\((M, \omega)\) with no circle action, SG/0502210

  10. Kȩdra J., McDuff D. (2005). Homotopy properties of Hamiltonian group actions. Geom. Topol. 9: 121–162

    Article  MathSciNet  Google Scholar 

  11. Lalonde F., McDuff D. (1996). The classification of ruled symplectic 4-manifolds. Math. Res. Lett. 3: 769–778

    MATH  MathSciNet  Google Scholar 

  12. Lalonde, F., McDuff, D.: Symplectic structures on fiber bundles, SG/0010275. Topology 42, 309–347 (2003). Erratum Topology 44, 1301–1303 (2005)

  13. Lalonde F., Pinsonnault M. (2004). The topology of the space of symplectic balls in rational 4-manifolds, SG/0207096. Duke Math. J. 122: 347–397

    Article  MATH  MathSciNet  Google Scholar 

  14. Lalonde F., McDuff D., Polterovich L. (1999). Topological rigidity of Hamiltonian loops and quantum homology. Invent. Math. 135: 369–385

    Article  MathSciNet  Google Scholar 

  15. Le, H.V., Ono, K.: Parameterized Gromov–Witten invariants and topology of symplectomorphism groups, preprint #28, MPIM Leipzig (2001), revised version SG/0704.3899

  16. Lerman E. (1995). Symplectic cuts. Math. Res. Lett. 2: 247–58

    MATH  MathSciNet  Google Scholar 

  17. Li B.-H. (1999). Representing nonnegative homology classes of \({\mathbb{C}}P^2\#n\overline{{\mathbb{C}}P}^2\) by minimal genus smooth embeddings. Trans. Am. Math. Soc. 352: 4155–4169

    Article  Google Scholar 

  18. Li T.-J. (1999). Smoothly embedded spheres in symplectic 4-manifolds. Proc. Am. Math. Soc 127: 609–613

    Article  MATH  Google Scholar 

  19. Li, J., Tian, G.: Virtual moduli cycles and Gromov–Witten invariants for general symplectic manifolds. Topics in Symplectic 4-manifolds (Irvine CA 1996), pp. 47–83. Internat. Press, Cambridge, MA (1998)

  20. McDuff D. (1990). The structure of rational and ruled symplectic 4-manifolds. J. Am. Math. Soc 3: 679–712 Erratum J Am Math Soc 5987988

    Article  MATH  MathSciNet  Google Scholar 

  21. McDuff, D.: From symplectic deformation to isotopy. In: Topics in Symplectic 4-manifolds (Irvine CA 1996), pp. 85–99 Internat. Press, Cambridge, MA (1998)

  22. McDuff D. (2005). Enlarging the Hamiltonian group, SG/0503268. J. Symplect. Geom. 3: 481–530

    MATH  MathSciNet  Google Scholar 

  23. McDuff, D., Salamon, D.A.: J-holomorphic Curves and Symplectic Topology. Colloquium Publications 52, American Mathematical Society, Providence, RI (2004)

  24. Pinsonnault, M.: Symplectomorphism groups and embeddings of balls into rational ruled surfaces. Compositio. Math. SG/0603310

  25. Ruan Y. (1993). Symplectic topology and extremal rays. Geom. Funkt. Anal. 3: 395–430

    Article  MATH  Google Scholar 

  26. Seidel P. (1999). On the group of symplectic automorphisms of \({\mathbb{C}}P^m\times {\mathbb{C}}P^n\). Am. Math. Soc. Transl. 196(2): 237–250

    MathSciNet  Google Scholar 

  27. Seidel, P.: Lectures on four dimensional Dehn twists, SG/0309012

  28. Taubes C.H. (1994). The Seiberg–Witten invariants and symplectic forms. Math. Res. Lett. 1: 809–822

    MATH  MathSciNet  Google Scholar 

  29. Zinger, A.: Pseudocycles and Integral Homology, AT/0605535

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dusa McDuff.

Additional information

Partially supported by NSF grants DMS 0305939 and 0604769.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDuff, D. The symplectomorphism group of a blow up. Geom Dedicata 132, 1–29 (2008). https://doi.org/10.1007/s10711-007-9175-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-007-9175-3

Keywords

Mathematics Subject Classification (2000)

Navigation