Skip to main content
Log in

Convexities of metric spaces

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We introduce two kinds of the notion of convexity of a metric space, called k-convexity and L-convexity, as generalizations of the CAT(0)-property and of the nonpositively curved property in the sense of Busemann, respectively. 2-uniformly convex Banach spaces as well as CAT(1)-spaces with small diameters satisfy both these convexities. Among several geometric and analytic results, we prove the solvability of the Dirichlet problem for maps into a wide class of metric spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball K., Carlen E.A. and Lieb E.H. (1994). Sharp uniform convexity and smoothness inequalities for trace norms. Invent. Math. 115: 463–482

    Article  MATH  MathSciNet  Google Scholar 

  2. Ballmann W. (1995). Lectures on Spaces of Nonpositive Curvature. Birkhäuser Verlag, Basel

    MATH  Google Scholar 

  3. Björn J. (2002). Boundary continuity for quasiminimizers on metric spaces. Illinois J. Math. 46: 383–403

    MATH  MathSciNet  Google Scholar 

  4. Bouziane, T.: Hölder continuity of energy minimizer maps between Riemannian polyhedra. Preprint, arXiv:math.DG/0409603

  5. Bridson M.R. and Haefliger A. (1999). Metric Spaces of Non-positive Curvature. Springer-Verlag, Berlin

    MATH  Google Scholar 

  6. Cheeger J. (1999). Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9: 428–517

    Article  MATH  MathSciNet  Google Scholar 

  7. Eells J. and Fuglede B. (2001). Harmonic Maps between Riemannian Polyhedra. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  8. Fuglede B. (2005). Dirichlet problems for harmonic maps from regular domains. Proc. London Math. Soc. 91(3): 249–272

    Article  MATH  MathSciNet  Google Scholar 

  9. Hajłasz P. and Koskela P. (1995). Sobolev meets Poincaré. C. R. Acad. Sci. Paris 320: 1211–1215

    MATH  Google Scholar 

  10. Heinonen J. and Koskela P. (1998). Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181: 1–61

    Article  MATH  MathSciNet  Google Scholar 

  11. Heinonen J., Koskela P., Shanmugalingam N. and Tyson J.T. (2001). Sobolev classes of Banach space-valued functions and quasiconformal mappings. J. Anal. Math. 85: 87–139

    Article  MATH  MathSciNet  Google Scholar 

  12. Jost J. (1997). Nonpositive Curvature: Geometric and Analytic Aspects. Birkhäuser Verlag, Basel

    MATH  Google Scholar 

  13. Korevaar N.J. and Schoen R.M. (1993). Sobolev spaces and harmonic maps for metric space targets. Comm. Anal. Geom. 1: 561–659

    MATH  MathSciNet  Google Scholar 

  14. Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I, II. Springer-Verlag, Berlin (1977, 1979).

  15. Ohta S. (2004). Cheeger type Sobolev spaces for metric space targets. Potential Anal. 20: 149–175

    Article  MATH  MathSciNet  Google Scholar 

  16. Ohta, S.: Harmonic maps and totally geodesic maps between metric spaces. Dissertation, Tohoku University (2003). Published in: Tohoku Mathematical Publications 28, Tohoku University, Sendai (2004).

  17. Ohta S. (2004). Regularity of harmonic functions in Cheeger-type Sobolev spaces. Ann. Global Anal. Geom. 26: 397–410

    Article  MATH  MathSciNet  Google Scholar 

  18. Otsu Y. and Shioya T. (1994). The Riemannian structure of Alexandrov spaces. J. Differential Geom. 39: 629–658

    MATH  MathSciNet  Google Scholar 

  19. Otsu, Y., Tanoue, H.: The Riemannian structure of Alexandrov spaces with curvature bounded above. Preprint

  20. Saloff-Coste L. (1992). A note on Poincaré, Sobolev and Harnack inequalities. Int. Math. Res. Not. 2: 27–38

    Article  MathSciNet  Google Scholar 

  21. Shanmugalingam N. (2000). Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoamericana 16: 243–279

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Ohta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohta, Si. Convexities of metric spaces. Geom Dedicata 125, 225–250 (2007). https://doi.org/10.1007/s10711-007-9159-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-007-9159-3

Keywords

Mathematics Subject Classification (2000)

Navigation