Skip to main content
Log in

Bounded differential forms, generalized Milnor–Wood inequality and an application to deformation rigidity

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We establish sufficient conditions for a cohomology class of a discrete subgroup Γ of a connected semisimple Lie group with finite center to be representable by a bounded differential form on the quotient by Γ of the associated symmetric space; furthermore if \(\rho : \Gamma\to\mathrm{PU}(1,q)\) is any representation of any discrete subgroup Γ of SU (1, p), we give an explicit closed bounded differential form on the quotient by Γ of complex hyperbolic space which is a representative for the pullback via ρ of the Kähler class of PU(1,q). If G,G′ are Lie groups of Hermitian type, we generalize to representations \(\rho : \Gamma\to G'\) of lattices Γ < G the invariant defined in [Burger, M., Iozzi, A.: Bounded cohomology and representation variates in PU (1,n). Preprint announcement, April 2000] for which we establish a Milnor–Wood type inequality. As an application we study maximal representations into PU(1, q) of lattices in SU(1,1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bavard Ch. (1991) Longueur stable des commutateurs. Enseign. Math. (2) 37 (1–2): 109–150

    MATH  MathSciNet  Google Scholar 

  2. Bestvina M., Fujiwara K. (2002) Bounded cohomology of subgroups of mapping class groups. Geom. Topol. 6: 69–89 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  3. Biran P., Entov M., Polterovich L. (2004) Calabi quasimorphisms for the symplectic ball. Commun. Contemp. Math. 6(5): 793–802

    Article  MATH  MathSciNet  Google Scholar 

  4. Blanc Ph. (1979) Sur la cohomologie continue des groupes localement compacts. Ann. Sci. École Norm. Sup. (4) 12(2): 137–168

    MathSciNet  Google Scholar 

  5. Borel, A.: Cohomology and Spectrum of an Arithmetic Group. Operator algebras and group representations, vol I (Neptun, 1980), Monogr. Stud. Math., vol.17, pp. 28–45. Pitman, Boston, MA (1984)

  6. Bradlow S.B., García-Prada O., Gothen P.B. (2003) Surface group representations in PU(p,q) and Higgs bundles. J. Diff. Geom. 64(1): 111–170

    MATH  Google Scholar 

  7. Brooks, R.: Some remarks on bounded cohomology. Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, NY, 1978) (Princeton, NJ), Ann. Math. Stud., vol.97, pp. 53–63. Princeton Univ. Press (1981)

  8. Brooks R., Series C. (1984) Bounded cohomology for surface groups. Topology 23(1): 29–36

    Article  MATH  MathSciNet  Google Scholar 

  9. Bucher, M.: Boundedness of characteristic classes for flat bundles. PhD thesis, ETH (2004)

  10. Burger, M., Iozzi, A.: Letter to Koziarz and Maubon. 20th October 2003

  11. Burger M., Iozzi A. (2002) Boundary maps in bounded cohomology. Geom. Funct. Anal. 12: 281–292

    Article  MATH  MathSciNet  Google Scholar 

  12. Burger M., Iozzi A. (2004) Bounded Kähler class rigidity of actions on Hermitian symmetric spaces. Ann. Sci. École Norm. Sup. (4) 37(1): 77–103

    MATH  MathSciNet  Google Scholar 

  13. Burger, M., Iozzi, A.: Bounded cohomology and representation varieties in PU(1,n). Preprint announcement, April 2000

  14. Burger, M., Iozzi, A., Labourie, F., Wienhard, A.: Maximal representations of surface groups: symplectic Anosov structures. Q. J. Pure Appl. Math. 1(3), 555–601 (2005) Special Issue: In Memory of Armand Borel, Part 2 of 3

    Google Scholar 

  15. Burger M., Iozzi A., Wienhard A. (2007) Hermitian symmetric spaces and Kähler rigidity. Transf. Groups., 12(1): 5–32

    Article  MATH  MathSciNet  Google Scholar 

  16. Burger, M., Iozzi, A., Wienhard, A.: Surface group representations with maximal Toledo invariant. preprint, http://www.math.ethz.ch/~iozzi/toledo.ps, arXiv:math.DG/0605656

  17. Burger, M., Iozzi, A., Wienhard, A.: Tight embeddings. preprint

  18. Burger M., Iozzi A., Wienhard A. (2003) Surface group representations with maximal Toledo invariant. C. R. Acad. Sci. Paris, Sér. I 336: 387–390

    MATH  MathSciNet  Google Scholar 

  19. Burger M., Monod N. (1999) Bounded cohomology of lattices in higher rank Lie groups. J. Eur. Math. Soc. 1(2): 199–235

    Article  MATH  MathSciNet  Google Scholar 

  20. Burger M., Monod N. (2002) Continuous bounded cohomology and applications to rigidity theory. Geom. Funct. Anal. 12: 219–280

    Article  MATH  MathSciNet  Google Scholar 

  21. Burger M., Mozes S. (1996) CAT(–1)-spaces, divergence groups and their commensurators. J. Am. Math. Soc. 9(1): 57–93

    Article  MATH  MathSciNet  Google Scholar 

  22. Clerc J.L., Ørsted B. (2003) The Gromov norm of the Kaehler class and the Maslov index. Asian J. Math. 7(2): 269–295

    MATH  MathSciNet  Google Scholar 

  23. Corlette K. (1988) Flat G-bundles with canonical metrics. J. Diff. Geom. 28: 361–382

    MATH  MathSciNet  Google Scholar 

  24. Domic A., Toledo D. (1987) The Gromov norm of the Kaehler class of symmetric domains. Math. Ann. 276(3): 425–432

    Article  MATH  MathSciNet  Google Scholar 

  25. Eberlein P.B. (1996) Geometry of Nonpositively Curved Manifolds. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL

    Google Scholar 

  26. Entov M., Polterovich L. (2003) Calabi quasimorphism and quantum homology. Int. Math. Res. Not. 30: 1635–1676

    Article  MathSciNet  Google Scholar 

  27. Epstein D.B.A., Fujiwara K. (1997) The second bounded cohomology of word-hyperbolic groups. Topology 36(6): 1275–1289

    Article  MATH  MathSciNet  Google Scholar 

  28. Gambaudo J.-M., Ghys É. (2004) Commutators and diffeomorphisms of surfaces. Ergodic Theory Dynam. Syst. 24(5): 1591–1617

    Article  MATH  MathSciNet  Google Scholar 

  29. Ghys, E.: Groupes d’homéomorphismes du cercle et cohomologie bornée. The Lefschetz centennial conference, Part III, (Mexico City 1984), Contemp. Math., vol.58, pp. 81–106. American Mathematical Society, RI (1987)

  30. Goldman, W.M.: Discontinuous groups and the Euler class. Thesis, University of California at Berkeley (1980)

  31. Goldman W.M. (1987) Characteristic classes and representations of discrete groups of Lie groups. Bull. Am. Math. Soc. 6(1): 91–94

    Article  Google Scholar 

  32. Goldman W.M. (1988) Topological components of spaces of representations. Invent. Math. 93(3): 557–607

    Article  MATH  MathSciNet  Google Scholar 

  33. Goldman, W.M.: Complex Hyperbolic Geometry. Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York (1999), Oxford Science Publications

  34. Goldman W.M., Millson J. (1987) Local rigidity of discrete groups acting on complex hyperbolic space. Invent. Math. 88: 495–520

    Article  MATH  MathSciNet  Google Scholar 

  35. Grigorchuk, R.I.: Some Results on Bounded Cohomology. Combinatorial and geometric group theory (Edinburgh, 1993), London Math. Soc. Lecture Note Ser., vol. 204, pp. 111–163. Cambridge University Press, Cambridge (1995)

  36. Gromov M. (1982) Volume and Bounded Cohomology. Inst. Hautes Études Sci. Publ. Math. 56: 5–99

    MATH  MathSciNet  Google Scholar 

  37. Gusevskii N., Parker J.R. (2000) Representations of free Fuchsian groups in complex hyperbolic space. Topology 39: 33–60

    Article  MATH  MathSciNet  Google Scholar 

  38. Iozzi, A.: Bounded Cohomology, Boundary Maps, and Representations into Homeo+(S 1) and SU(1,n). Rigidity in Dynamics and Geometry, Cambridge, UK, 2000, pp. 237–260. Springer Verlag (2002)

  39. Kotschick D. (2004) Quasi-homomorphisms and stable lengths in mapping class groups. Proc. Am. Math. Soc. 132(11): 3167–3175 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  40. Kotschick D. (2004) What is ... a quasi-morphism? Notices Am. Math. Soc. 51(2): 208–209

    MATH  MathSciNet  Google Scholar 

  41. Koziarz, V., Maubon, J.: Harmonic maps and representations of non-uniform lattices of PU(m,1). preprint, arXiv:math.DG/0309193

  42. Matsumoto S. (1987) Some remarks on foliated S 1 bundles. Invent. Math. 90: 343–358

    Article  MATH  MathSciNet  Google Scholar 

  43. Milnor J. (1958) On the existence of a connection with curvature zero. Comment. Math. Helv. 32: 215–223

    Article  MATH  MathSciNet  Google Scholar 

  44. Mineyev I. (2001) Straightening and bounded cohomology of hyperbolic groups. Geom. Funct. Anal. 11(4): 807–839

    Article  MATH  MathSciNet  Google Scholar 

  45. Mineyev I. (2002) Bounded cohomology characterizes hyperbolic groups. Q. J. Math. 53(1): 59–73

    Article  MATH  MathSciNet  Google Scholar 

  46. Monod, N.: Continuous bounded cohomology of locally compact groups. Lecture Notes in Math., no. 1758, Springer-Verlag (2001)

  47. Mostow G.W. (1961) Cohomology of topological groups and nilmanifolds. Ann. Math. (2) 73: 20–48

    Article  MathSciNet  Google Scholar 

  48. Saper, L.: email communication (2005)

  49. Soma, T.: The third bounded cohomology and Kleinian groups. Topology and Teichmüller spaces (Katinkulta, 1995), pp. 265–277. World Sci. Publishing, River Edge, NJ (1996)

  50. Toledo D. (1989) Representations of surface groups in complex hyperbolic space. J. Diff. Geom. 29(1): 125–133

    MATH  MathSciNet  Google Scholar 

  51. Turaev V.G. (1984) A cocycle of the symplectic first Chern class and Maslov indices. Funktsional. Anal. i Prilozhen. 18(1): 43–48

    Article  MATH  MathSciNet  Google Scholar 

  52. Wood J.W. (1971) Bundles with totally disconnected structure group. Comment. Math. Helv. 46: 257–273

    Article  MATH  MathSciNet  Google Scholar 

  53. Zimmer R.J. (1984) Ergodic theory and semisimple groups. Birkhäuser, Boston

    MATH  Google Scholar 

  54. Zucker S. (1982) L 2-cohomology of warped products and arithmetic groups. Invent. Math. 70: 169–218

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Iozzi.

Additional information

Alessandra Iozzi was partially supported by FNS grant PP002-102765

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burger, M., Iozzi, A. Bounded differential forms, generalized Milnor–Wood inequality and an application to deformation rigidity. Geom Dedicata 125, 1–23 (2007). https://doi.org/10.1007/s10711-006-9108-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-006-9108-6

Keywords

Mathematics Subject Classifications (2000)

Navigation