Skip to main content

Advertisement

Log in

An Optimal Inequality and Extremal Classes of Affine Spheres in Centroaffine Geometry

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

A hypersurface f : MRn+1 in an affine (n+1)-space is called centroaffine if its position vector is always transversal to f*(TM) in Rn+1. In this paper, we establish a general optimal inequality for definite centroaffine hypersurfaces in Rn+1 involving the Tchebychev vector field. We also completely classify the hypersurfaces which verify the equality case of the inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. F. Byrd M. D. Friedman (1971) Handbook of Elliptic Integrals for Engineers and Scientists Springer-Verlag Berlin

    Google Scholar 

  2. B.Y. Chen (1996) ArticleTitleJacobi’s elliptic functions and Lagrangian immersions Proc. Royal Soc. Edinburgh Sect. A, Math. 126 687–704

    Google Scholar 

  3. B.Y. Chen (2004) ArticleTitleAn optimal inequality and an extremal class of graph hypersurfaces in affine geometry Proc. Japan Acad. Ser. A, Math. 80 123–128

    Google Scholar 

  4. Chen, B. Y., Dillen, F. and Verstraelen, L. (2005) Affine δ-invariants and their applications to centroaffine geometry. Differential Geom. Appl. 23 (2005) (to appear).

  5. B. Y. Chen L. Vrancken (1996) ArticleTitleLagrangian submanifolds satisfying a basic equality. Math Proc. Cambridge Philos. Soc. 120 291–307

    Google Scholar 

  6. F. Dillen S. Nölker (1993) ArticleTitleSemi-parallelity, multi-rotation surfaces and the helix-property. J. Reine Angew Math. 435 33–63

    Google Scholar 

  7. F. Dillen G. Verbouwe L. Vrancken (2003) ArticleTitleCubic form geometry for immersions in centro-affine and graph hypersurfaces Results Math. 43 88–95

    Google Scholar 

  8. F. Dillen L. Vrancken (1991) ArticleTitle3-dimensional affine hypersurfaces in with parallel cubic form Nagoya Math. J. 124 41–53

    Google Scholar 

  9. F. Dillen L. Vrancken (1994) ArticleTitleCalabi-type composition of affine spheres Differential Geom. Appl. 4 303–328 Occurrence Handle10.1016/0926-2245(94)90002-7

    Article  Google Scholar 

  10. Dillen, F. and Vrancken L.: Improper affine spheres and δ-invariants. Banach Center Publications. Polish Acad. Sci. (2004) (to appear).

  11. R. Gardner G. Wilkens (1997) ArticleTitleThe fundamental theorems of curves and hypersurfaces in centro-affine geometry Bull. Belg. Math. Soc. Simon Stevin 4 379–401

    Google Scholar 

  12. S. Hiepko (1979) ArticleTitleEine innere Kennzeichnung der verzerrten Produkts Math. Annl. 241 209–215 Occurrence Handle10.1007/BF01421206

    Article  Google Scholar 

  13. M. Kriele L. Vrancken (1999) ArticleTitleAn extremal class of three-dimensional hyperbolic affine spheres Geom. Dedicata 77 239–252 Occurrence Handle10.1023/A:1005119304120

    Article  Google Scholar 

  14. M. Kriele C. Scharlach L. Vrancken (2001) ArticleTitleAn extremal class of 3-dimensional elliptic affine spheres Hokkaido Math. J. 30 1–23

    Google Scholar 

  15. D. F. Lawden (1989) Elliptic Functions and Applications Springer-Verlag Berlin

    Google Scholar 

  16. A. M. Li U. Simon G. Zhao (1993) Global Affine Differential Geometry of Hypersurfaces. Expositions in Math 11 Walter de Gruyter  

    Google Scholar 

  17. A. M. Li C. P. Wang (1991) ArticleTitleCanonical centroaffine hypersurfaces in Rn+1 Results Math. 20 660–681

    Google Scholar 

  18. K. Nomizu T. Sasaki (1994) Affine Differential Geometry. Geometry of Affine Immersions Cambridge Tracts in Math. 111 Cambridge University Press  

    Google Scholar 

  19. B. Opozda (1993) ArticleTitleSome relations between Riemannian and affine geometry Geom. Dedicata 47 225–236 Occurrence Handle10.1007/BF01266619

    Article  Google Scholar 

  20. C. Scharlach U. Simon L. Verstraelen L. Vrancken (1997) ArticleTitleA new intrinsic curvature invariant for centroaffine hypersurfaces Beiträge Algebra Geom. 38 437–458

    Google Scholar 

  21. Scharlach C. and Vrancken, L., A curvature invariant for centroaffine hypersurfaces, Part II. In Geometry and Topology of Submanifolds. VIII, World Scientific, Singapore, 1996, pp. 341–350.

  22. U. Simon A. Schwenk-Schellschmidt H. Viesel (1991) Introduction to the Affine Differential Geometry of Hypersurfaces Science University of Tokyo  

    Google Scholar 

  23. L. Vrancken (2000) ArticleTitleThe Magid-Ryan conjecture for equiaffine hyperspheres with constant sectional curvature J. Differential Geom. 54 99–138

    Google Scholar 

  24. C. P. Wang (1994) ArticleTitleCentroaffine minimal hypersurfaces in Rn+1 Geom. Dedicata 51 63–74 Occurrence Handle10.1007/BF01264101

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bang-Yen Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, BY. An Optimal Inequality and Extremal Classes of Affine Spheres in Centroaffine Geometry. Geom Dedicata 111, 187–210 (2005). https://doi.org/10.1007/s10711-004-4199-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-004-4199-4

Keywords

Mathematics Subject Classification (2000)

Navigation