Skip to main content

Advertisement

Log in

Broad-scale genetic patterns of New Zealand abalone, Haliotis iris, across a distribution spanning 13° latitude and major oceanic water masses

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The New Zealand black-foot abalone, Haliotis iris, or pāua, is endemic to the rocky reefs surrounding New Zealand, whose main land mass spans 13° of latitude and separates the Tasman Sea from the Pacific Ocean. In this study, we examined the population genetic structure of this important commercial, cultural and recreational species by genotyping nine microsatellite loci in 485 pāua from 27 locations distributed across mainland New Zealand and the Chatham Islands. We found low, but significant, levels of genetic differentiation. Key genetic breaks were identified among the Chatham Islands and mainland samples; patterns that are strongly corroborated by prior work employing mtDNA sequences. AMOVAs indicated that samples from the south of the North Island were more similar to the South Island samples than to other North Island samples, however multivariate analysis and Bayesian clustering could not identify a significant pattern. Differentiation between the Chatham Islands and the mainland is most likely due to isolation by distance, while differentiation of North Island samples corresponds with major components of New Zealand’s oceanography, Cook Strait and the East Cape. Despite intense fishing pressure, we detected no signature of genetic bottlenecks in any region suggesting that population sizes have remained relatively stable over recent time or that the census size of this species is much larger than its effective population size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdelkrim J, Robertson BC, Stanton JAL, Gemmell NJ (2009) Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. Biotechniques 46:185–192. doi:10.2144/000113084

    CAS  PubMed  Google Scholar 

  • Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744. doi:10.1046/j.1365-294X.2003.02063.x

    PubMed  Google Scholar 

  • Balloux F, Brunner H, Lugon-Moulin N, Hausser J, Goudet J (2000) Microsatellites can be misleading: an empirical and simulation study. Evolution 54:1414–1422. doi:10.1111/j.0014-3820.2000.tb00573.x

    CAS  PubMed  Google Scholar 

  • Baranski M, Rourke M, Loughnan S, Austin C, Robinson N (2006) Isolation and characterization of 125 microsatellite DNA markers in the blacklip abalone, Haliotis rubra. Mol Ecol Notes 6:740–746. doi:10.1111/j.1471-8286.2006.01327.x

    CAS  Google Scholar 

  • Barnes EJ (1985) Eastern Cook Strait region circulation inferred from satellite-derived, sea surface, temperature data. N Z J Mar Freshw 19:405–411. doi:10.1080/00288330.1985.9516105

    Google Scholar 

  • Barshis DJ, Sotka EE, Kelly RP, Sivasundar A, Menge BA, Barth JA, Palumbi SR (2011) Coastal upwelling is linked to temporal genetic variability in the acorn barnacle Balanus glandula. Mar Ecol Prog Ser 439:139–150. doi:10.3354/meps09339

    Google Scholar 

  • Bowman MJ, Kibblewhite AC, Murtagh RA, Chiswell SM, Sanderson BG (1983) Circulation and mixing in greater Cook Strait, New Zealand. Oceanol Acta 6:383–391

    CAS  Google Scholar 

  • Brookfield JFY (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5:453–544. doi:10.1046/j.1365-294X.1996.00098.x

    CAS  PubMed  Google Scholar 

  • Carlsson J (2008) Effects of microsatellite null alleles on assignment testing. J Hered 99:616–623. doi:10.1093/jhered/esn048

    CAS  PubMed  Google Scholar 

  • Carlsson J, Morrison CL, Reece KS (2006) Wild and aquaculture populations of the eastern oyster compared using microsatellites. J Hered 97:595–598

    CAS  PubMed  Google Scholar 

  • Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631. doi:10.1093/molbev/msl191

    CAS  PubMed  Google Scholar 

  • Chiswell SM (2009) Colonisation and connectivity by intertidal limpets among New Zealand, Chatham and Sub-Antarctic Islands. II. Oceanographic connections. Mar Ecol Prog Ser 388:121–135. doi:10.3354/meps08167

    Google Scholar 

  • Chiswell SM, Roemmich D (1998) The East Cape Current and two eddies: a mechanism for larval retention? N Z J Mar Freshw 32:385–397. doi:10.1080/00288330.1998.9516833

    Google Scholar 

  • Christie MR, Tissot BN, Albins MA, Beets JP, Jia YL, Ortiz DM, Thompson SE, Hixon MA (2010) Larval connectivity in an effective network of marine protected areas. PLoS One 5:8. doi:10.1371/journal.pone.0015715

    Google Scholar 

  • Clarke CB (2001) Growth and survival of Haliotis iris in northern New Zealand. Dissertation, University of Auckland, Auckland, New Zealand

  • Conod N, Bartlett JP, Evans BS, Elliott NG (2002) Comparison of mitochondrial and nuclear DNA analyses of population structure in the blacklip abalone Haliotis rubra Leach. Mar Freshw Res 53:711–718. doi:10.1071/MF01197

    CAS  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cornuet JM, Santos F, Beaumont MA, Robert CP, Marin JM, Balding DJ, Guillemaud T, Estoup A (2008) Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation. Bioinformatics 24:2713–2719. doi:10.1093/bioinformatics/btn514

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cristescu R, Sherwin WB, Handasyde K, Cahill V, Cooper DW (2010) Detecting bottlenecks using BOTTLENECK 1.2.02 in wild populations: the importance of the microsatellite structure. Conserv Genet 11:1043–1049. doi:10.1007/s10592-009-9949-2

    Google Scholar 

  • Dąbrowski MJ, Bornelöv S, Kruczyk N, Baltzer N, Komorowski J (2015) ‘True’ null allele detection in microsatellite loci: a comparison of methods, assessment of difficulties and survey of possible improvements. Mol Ecol Res 15:477–488. doi:10.1111/1755-0998.12326

    Google Scholar 

  • Damm S, Hadrys H (2012) A dragonfly in the desert: genetic pathways of the widespread Trithemis arteriosa (Odonata: Libellulidae) suggest male-biased dispersal. Org Divers Evol 12:267–279. doi:10.1007/s13127-012-0079-1

    Google Scholar 

  • De Wit P, Palumbi SR (2013) Transcriptome-wide polymorphisms of red abalone (Haliotis rufrescens) reveal patterns of gene flow and local adaptation. Mol Ecol 22:2884–2897. doi:10.1111/mec.12081

    PubMed  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39:1–38

    Google Scholar 

  • Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170. doi:10.1073/pnas.91.8.3166

    PubMed Central  PubMed  Google Scholar 

  • Earl DA, Vonholdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi:10.1007/s12686-011-9548-7

    Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379. doi:10.1371/journal.pone.0019379

    CAS  PubMed Central  PubMed  Google Scholar 

  • Estoup A, Jarne P, Cornuet JM (2002) Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol Ecol 11:1591–1604. doi:10.1046/j.1365-294X.2002.01576.x

    CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    CAS  PubMed  Google Scholar 

  • Evans BS, Sweijd NA, Bowie RCK, Cook PA, Elliott NG (2004) Population genetic structure of the perlemoen Haliotis midae in South Africa: evidence of range expansion and founder events. Mar Ecol Prog Ser 270:163–172. doi:10.3354/meps270163

    Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi:10.1111/j.1755-0998.2010.02847.x

    PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed Central  PubMed  Google Scholar 

  • FAO Fisheries and Aquaculture Department, Statistics and Information Service (2011) FishStatJ: Universal software for fishery statistical time series. Copyright 2011. http://www.fao.org/fishery/statistics/software/fishstatj/en. Accessed 25 Aug 2012

  • Féral JP (2002) How useful are the genetic markers in attempts to understand and manage marine biodiversity? J Exp Mar Biol Ecol 268:121–145. doi:10.1016/S0022-0981(01)00382-3

    Google Scholar 

  • Francis MP (1996) Geographic distribution of marine reef fishes in the New Zealand region. N Z J Mar Freshw 30:35–55. doi:10.1080/00288330.1996.9516695

    Google Scholar 

  • Fu YX, Chakraborty R (1998) Simultaneous estimation of all the parameters of a stepwise mutation model. Genetics 150:487–497

    CAS  PubMed Central  PubMed  Google Scholar 

  • Galtier N, Nabholz B, Glemin S, Hurst GDD (2009) Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol 18:4541–4550. doi:10.1111/j.1365-294X.2009.04380.x

    CAS  PubMed  Google Scholar 

  • Gerlach G, Jueterbock A, Kraemer P, Deppermann J, Harmand P (2010) Calculations of population differentiation based on GST and D: forget GST but not all of statistics! Mol Ecol 19:3845–3852. doi:10.1111/j.1365-294X.2010.04784.x

    PubMed  Google Scholar 

  • Goldstien SJ, Gemmell NJ, Schiel DR (2009) Colonisation and connectivity by intertidal limpets among New Zealand, Chatham and Sub-Antarctic Islands. I. Genetic connections. Mar Ecol Prog Ser 388:111–119. doi:10.3354/meps08046

    Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (2.9.3.2). http://www2.unilch/izea/softwares/fstat.htm. Updated from Goudet (1995). Accessed 30 Nov 2010

  • Gow JL, Noble LR, Rollinson D, Jones CS (2005) A high incidence of clustered microsatellite mutations revealed by parent-offspring analysis in the African freshwater snail, Bulinus forskalii (Gastropoda, Pulmonata). Genetica 124:77–83. doi:10.1007/s10709-005-0204-6

    CAS  PubMed  Google Scholar 

  • Gruenthal KM, Burton RS (2008) Genetic structure of natural populations of the California black abalone (Haliotis cracherodii Leach, 1814), a candidate for endangered species status. J Exp Mar Biol Ecol 355:47–58. doi:10.1016/j.jembe.2007.11.013

    CAS  Google Scholar 

  • Gruenthal KM, Acheson LK, Burton RS (2007) Genetic structure of natural populations of California red abalone (Haliotis rufescens) using multiple genetic markers. Mar Biol 152:1237–1248. doi:10.1007/s00227-007-0771-4

    Google Scholar 

  • Gutiérrez-Gonzalez JL, Cruz P, del Rio-Portilla MA, Perez-Enriquez R (2007) Genetic structure of green abalone Haliotis fulgens population off Baja California, Mexico. J Shellfish Res 26:839–846

    Google Scholar 

  • Harris TFW (1990) Greater Cook Strait: form and flow. New Zealand Oceanographic Institute: DSIR Marine and Freshwater, Wellington

    Google Scholar 

  • Hauser L, Carvalho GR (2008) Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fish 9:333–362. doi:10.1111/j.1467-2979.2008.00299.x

    Google Scholar 

  • Heath RA (1970) Hydrology and circulation in central and southern Cook Strait, New Zealand. N Z J Mar Freshw 5:178–199. doi:10.1080/00288330.1971.9515375

    Google Scholar 

  • Heath RA (1972) Oceanic upwelling produced by northerly winds on the north Canterbury coast, New Zealand. N Z J Mar Freshw 6:343–351. doi:10.1080/00288330.1972.9515429

    Google Scholar 

  • Heath RA (1978) Semidiurnal tides in Cook Strait. N Z J Mar Freshw 12:87–97. doi:10.1080/00288330.1978.9515730

    Google Scholar 

  • Heath RA (1985) A review of the physical oceanography of the seas around New Zealand—1982. N Z J Mar Freshw 19:79–124. doi:10.1080/00288330.1985.9516077

    Google Scholar 

  • Hedgecock D, Li G, Hubert S, Bucklin K, Ribes V (2004) Widespread null alleles and poor cross-species amplification of microsatellite DNA loci cloned from the Pacific oyster, Crassostrea gigas. J Shellfish Res 23:379–385

    Google Scholar 

  • Hedrick PW (1999) Perspective: highly variable loci and their interpretation in evolution and conservation. Evolution 53:313–318. doi:10.2307/2640768

    Google Scholar 

  • Hellberg ME (2009) Gene flow and isolation among populations of marine animals. Annu Rev Ecol Evol Syst 40:291–310. doi:10.1146/annurev.ecolsys.110308.120223

    Google Scholar 

  • Hooker SH, Creese RG (1995) Reproduction of pāua, Haliotis iris Gmelin 1791 (Mollusca, Gastropoda), in north-eastern New Zealand. Mar Freshw Res 46:617–622. doi:10.1071/MF9950617

    Google Scholar 

  • Hume TM, Bell RG, Delange WP, Healy TR, Hicks DM, Kirk RM (1992) Coastal oceanography and sedimentology in New Zealand, 1967–91. N Z J Mar Freshw 26:1–36. doi:10.1080/00288330.1992.9516497

    Google Scholar 

  • Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405. doi:10.1093/bioinformatics/btn129

    CAS  PubMed  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:15. doi:10.1186/1471-2156-11-94

    Google Scholar 

  • Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026. doi:10.1111/j.1365-294X.2008.03887.x

    PubMed  Google Scholar 

  • Kalinowski ST (2002) How many alleles per locus should be used to estimate genetic distances? Heredity 88:62–65. doi:10.1038/sj/hdy/6800009

    CAS  PubMed  Google Scholar 

  • Kalinowski ST (2011) The computer program STRUCTURE does not reliably identify the main genetic clusters within species: simulations and implications for human population structure. Heredity 106:625–632. doi:10.1038/hdy.2010.95

    CAS  PubMed Central  PubMed  Google Scholar 

  • Levin LA (2006) Recent progress in understanding larval dispersal: new directions and digressions. Integr Comp Biol 46:282–297. doi:10.1093/icb/icj024

    CAS  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Matschiner M, Salzburger W (2009) TANDEM: integrating automated allele binning into genetics and genomics workflows. Bioinformatics 25:1982–1983. doi:10.1093/bioinformatics/btp303

    CAS  PubMed  Google Scholar 

  • McCormick TB, Buckley LM, Brogan J, Perry LM (2008) Drift macroalgae as a potential dispersal mechanism for the white abalone Haliotis sorenseni. Mar Ecol Prog Ser 362:225–232. doi:10.3354/meps07419

    Google Scholar 

  • McShane PE (1992) Early life history of abalone: a review. In: Shepherd SA, Tegner MJ, Guzman Del Proo SA (eds) Abalone of the world: biology, fisheries and culture. Fishing News Books, Oxford, pp 120–138

    Google Scholar 

  • McShane PE, Naylor JR (1995) Depth can affect postsettlement survival of Haliotis iris (Mollusca, Gastropoda). J Exp Mar Biol Ecol 187:1–12. doi:10.1016/0022-0981(94)00163-8

    Google Scholar 

  • McShane PE, Naylor JR (1997) Direct estimation of natural mortality of the New Zealand abalone, Haliotis iris (Note). N Z J Mar Freshw 31:135–137. doi:10.1080/00288330.1997.9516750

    Google Scholar 

  • Miller KM, Laberee K, Kaukinen KH, Li S, Withler RE (2001) Development of microsatellite loci in pinto abalone (Haliotis kamtschatkana). Mol Ecol Notes 1:315–317. doi:10.1046/j.1471-8278.2001.00122.x

    CAS  Google Scholar 

  • Ministry of Fisheries (2011) PAUA (PAU). In: Report from the fisheries assessment plenary, May 2011: stock assessments and yield estimates. Ministry of Fisheries, Wellington, pp 672–739

  • Moore LB (1961) Distribution patterns of New Zealand seaweeds. Tuatara 9:18–23

    Google Scholar 

  • Naylor JR, McShane PE (1997) Predation by polychaete worms on larval and post-settlement abalone Haliotis iris (Mollusca:Gastropoda). J Exp Mar Biol Ecol 214:283–290. doi:10.1016/S0022-0981(97)00030-0

    Google Scholar 

  • Naylor JR, McShane PE (2001) Mortality of post-settlement abalone Haliotis iris caused by conspecific adults and wave exposure. N Z J Mar Freshw 35:363–369. doi:10.1080/00288330.2001.9517006

    Google Scholar 

  • Naylor JR, Andrew NL, Kim SW (2006) Demographic variation in the New Zealand abalone Haliotis iris. Mar Freshw Res 57:215–224. doi:10.1071/MF05150

    Google Scholar 

  • Naylor JR, Manighetti BM, Neil HL, Kim SW (2007) Validated estimation of growth and age in the New Zealand abalone Haliotis iris using stable oxygen isotopes. Mar Freshw Res 58:354–362. doi:10.1071/MF06088

    CAS  Google Scholar 

  • Nei M, Chesser RK (1983) Estimation of fixation indexes and gene diversities. Ann Hum Genet 47:253–259. doi:10.1111/j.1469-1809.1983.tb00993.x

    CAS  PubMed  Google Scholar 

  • Palumbi SR (1992) Marine speciation on a small planet. Trends Ecol Evol 7:114–118. doi:10.1016/0169-5347(92)90144-Z

    CAS  PubMed  Google Scholar 

  • Palumbi SR (1994) Genetic divergence, reproductive isolation, and marine speciation. Annu Rev Ecol Syst 25:547–572. doi:10.1146/annurev.ecolsys.25.1.547

    Google Scholar 

  • Pawson DL (1961) Distribution patterns of New Zealand echinoderms. Tuatara 9:9–18

    Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pemberton JM, Slate J, Bancroft DR, Barrett JA (1995) Nonamplifying alleles at microsatellite loci: a caution for parentage and population studies. Mol Ecol 4:249–252. doi:10.1111/j.1365-294X.1995.tb00214.x

    CAS  PubMed  Google Scholar 

  • Phillips NE, Shima JS (2006) Differential effects of suspended sediments on larval survival and settlement of New Zealand urchins Evechinus chloroticus and abalone Haliotis iris. Mar Ecol Prog Ser 314:149–158. doi:10.3354/meps314149

    Google Scholar 

  • Poore GCB (1972) Ecology of New Zealand abalones, Haliotis species (Mollusca: Gastropoda) 2. Seasonal and diurnal movements. N Z J Mar Freshw 6:246–258. doi:10.1080/00288330.1972.9515424

    Google Scholar 

  • Poore GCB (1973) Ecology of New Zealand abalones, Haliotis species (Mollusca: Gastropoda) 4. Reproduction. N Z J Mar Freshw 7:67–84. doi:10.1080/00288330.1973.9515456

    Google Scholar 

  • Powell AWB (1961) New Zealand biotic provinces. Tuatara 9:1–8

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. http://www.r-project.org. Accessed 10 Nov 2012

  • Roberts RD, Lapworth C (2001) Effect of delayed metamorphosis on larval competence, and post-larval survival and growth, in the abalone Haliotis iris Gmelin. J Exp Mar Biol Ecol 258:1–13. doi:10.1016/S0022-0981(00)00346-4

    PubMed  Google Scholar 

  • Roberts RD, Kaspar HF, Barker RJ (2004) Settlement of abalone (Haliotis iris) larvae in response to five species of coralline algae. J Shellfish Res 23:975–987

    Google Scholar 

  • Rönkä N, Kvist L, Pakanen V-M, Rönkä A, Degtyaryev V, Tomkovich P, Tracy D, Koivula K (2012) Phylogeography of the Temminck’s Stint (Calidris temminckii): historical vicariance but little present genetic structure in a regionally endangered Palearctic wader. Divers Distrib 18:704–716. doi:10.1111/j.1472-4642.2011.00865.x

    Google Scholar 

  • Ross PM, Hogg ID, Pilditch CA, Lundquist CJ (2009) Phylogeography of New Zealand’s coastal benthos. N Z J Mar Freshw 43:1009–1027. doi:10.1080/00288330.2009.9626525

    Google Scholar 

  • Rousset F (2008) GENEPOP ‘ 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106. doi:10.1111/j.1471-8286.2007.01931.x

    PubMed  Google Scholar 

  • Ryman N, Palm S (2006) POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Mol Ecol Notes 6:600–602. doi:10.1111/j.1365-294X.2006.01378.x

    Google Scholar 

  • Sainsbury KJ (1982) Population dynamics and fishery management of the pāua, Haliotis iris. 1. Population structure, growth, reproduction, and mortality. N Z J Mar Freshw 16:147–161. doi:10.1080/00288330.1982.9515958

    Google Scholar 

  • Schiel DR, Breen PA (1991) Population structure, ageing, and fishing mortality of the New Zealand abalone Haliotis iris. Fish Bull 89:681–691

    Google Scholar 

  • Schlotterer C, Ritter R, Harr B, Brem G (1998) High mutation rate of a long microsatellite allele in Drosophila melanogaster provides evidence for allele-specific mutation rates. Mol Biol Evol 15:1269–1274

    CAS  PubMed  Google Scholar 

  • Schug MD, Hutter CM, Wetterstrand KA, Gaudette MS, Mackay TFC, Aquadro CF (1998) The mutation rates of di-, tri- and tetranucleotide repeats in Drosophila melanogaster. Mol Biol Evol 15:1751–1760

    CAS  PubMed  Google Scholar 

  • Schwartz MK, McKelvey KS (2009) Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conserv Genet 10:441–452. doi:10.1007/s10592-008-9622-1

    Google Scholar 

  • Shirtcliffe TGL, Moore MI, Cole AG, Viner AB, Baldwin R, Chapman B (1990) Dynamics of the Cape Farewell upwelling plume, New Zealand. N Z J Mar Freshw 24:555–568. doi:10.1080/00288330.1990.9516446

    Google Scholar 

  • Smith PJ, MacArthur GJ, Michael KP (1989) Regional variation in electromorph frequencies in the tuatua, Paphies subtriangulata, around New Zealand. N Z J Mar Freshw 23:27–33. doi:10.1080/00288330.1989.9516337

    Google Scholar 

  • Sponaugle S, Cowen RK, Shanks A, Morgan SG, Leis JM, Pineda JS, Boehlert GW, Kingsford MJ, Lindeman KC, Grimes C, Munro JL (2002) Predicting self-recruitment in marine populations: biophysical correlates and mechanisms. Bull Mar Sci 70:341–375

    Google Scholar 

  • Stevens MI, Hogg ID (2004) Population genetic structure of New Zealand’s endemic corophiid amphipods: evidence for allopatric speciation. Biol J Linn Soc Lond 81:119–133. doi:10.1111/j.1095-8312.2004.00270.x

    Google Scholar 

  • Stevens GR, McGlone M, McCulloch B (1995) Prehistoric New Zealand. Reed Publishing (NZ) Ltd., Auckland

    Google Scholar 

  • Tang S, Tassanakajon A, Klinbunga S, Jarayabhand P, Menasveta P (2004) Population structure of tropical abalone (Haliotis asinina) in coastal waters of Thailand determined using microsatellite markers. Mar Biotechnol 6:604–611. doi:10.1007/s10126-004-2300-5

    CAS  PubMed  Google Scholar 

  • Teske PR, Papadopoulos I, Barker NP, McQuaid CD (2012) Mitochondrial DNA paradox: sex-specific genetic structure in a marine mussel—despite maternal inheritance and passive dispersal. BMC Genet 13:45. doi:10.1186/1471-2156-13-45

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thorrold SR, Jones GP, Hellberg ME, Burton RS, Swearer SE, Neigel JE, Morgan SG, Warner RR (2002) Quantifying larval retention and connectivity in marine populations with artificial and natural markers. Bull Mar Sci 70:291–308

    Google Scholar 

  • Tong LJ, Moss GA, Redfearn P, Illingworth J (1992) A manual of techniques for culturing pāua, Haliotis iris, through to the early juvenile stage. MAF Fisheries Technical Report No. 31. Ministry of Fisheries, Wellington, New Zealand

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi:10.1111/j.1471-8286.2004.00684.x

    Google Scholar 

  • Veale AJ, Lavery SD (2012) The population genetic structure of the waratah anemone (Actinia tenebrosa) around New Zealand. N Z J Mar Freshw 46:523–536. doi:10.1080/00288330.2012.730053

    Google Scholar 

  • Walsh PS, Metzger DA, Higuchi R (1991) Chelex-100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513

    CAS  PubMed  Google Scholar 

  • Waples RS (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Hered 89:438–450. doi:10.1093/jhered/89.5.438

    Google Scholar 

  • Waples RS, Gaggiotti O (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15:1419–1439. doi:10.1111/j.1365-294X.2006.02890.x

    CAS  PubMed  Google Scholar 

  • White DJ, Wolff JN, Pierson M, Gemmell NJ (2008) Revealing the hidden complexities of mtDNA inheritance. Mol Ecol 17:4925–4942. doi:10.1111/j.1365-294X.2008.03982.x

    CAS  PubMed  Google Scholar 

  • Will M, Hale ML, Schiel DR, Gemmell NJ (2011) Low to moderate levels of genetic differentiation detected across the distribution of the New Zealand abalone, Haliotis iris. Mar Biol 158:1417–1429. doi:10.1007/s00227-011-1659-x

    Google Scholar 

  • Withler RE, Campbell A, Li SR, Brouwer D, Supernault KJ, Miller KM (2003) Implications of high levels of genetic diversity and weak population structure for the rebuilding of northern abalone in British Columbia, Canada. J Shellfish Res 22:839–847

    Google Scholar 

  • Yannic G, Basset P, Buechi L, Hausser J, Broquet T (2012) Scale-specific sex-biased dispersal in the Valais shrew unveiled by genetic variation on the y chromosome, autosomes, and mitochondrial DNA. Evolution 66:1737–1750. doi:10.1111/j.1558-5646.2011.01554.x

    PubMed  Google Scholar 

  • You W, Zhan X, Wang D, Li W, Luo X, Ke C (2011) Genetic variation analysis in wild and cultured subpopulations of small abalone Haliotis diversicolor estimated by microsatellite markers. N Am J Aquacult 73:445–450. doi:10.1080/15222055.2011.629939

    Google Scholar 

  • Zarza E, Reynoso VH, Emerson BC (2011) Discordant patterns of geographic variation between mitochondrial and microsatellite markers in the Mexican black iguana (Ctenosaura pectinata) in a contact zone. J Biogeogr 38:1394–1405. doi:10.1111/j.1365-2699.2011.02485.x

    Google Scholar 

Download references

Acknowledgments

This work was funded through the New Zealand Ministry of Fisheries Tender GEN2007/A. We would like to thank Jane Symonds at the National Institute of Water and Atmospheric Research (NIWA) for contributing unpublished microsatellite primer sequences which were developed for NIWA’s Foundation for Research Science and Technology Project C01X0705 “Increased aquaculture production through advanced broodstock development”. We also thank Rosemary Rickman and the team at GenomNZ for contributing technical support and advice.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret Will.

Additional information

Genotype data available from the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.575p1.

mtCOI sequences: GenBank accessions JF441275–JF441316.

mtATPase8–ATPase6 sequences: GenBank accessions JF441317–JF441424.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2362 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Will, M., McCowan, T. & Gemmell, N.J. Broad-scale genetic patterns of New Zealand abalone, Haliotis iris, across a distribution spanning 13° latitude and major oceanic water masses. Genetica 143, 487–500 (2015). https://doi.org/10.1007/s10709-015-9847-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-015-9847-0

Keywords

Navigation