Skip to main content
Log in

Historical process lead to false genetic signal of current connectivity among populations

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Identification of the effects of historical processes on spatial genetic variation is of major importance in landscape genetics, especially in recent systems where the signal of recent isolation is often hardly perceptible. The goal of this study was to assess how differences in colonization patterns could influence spatial genetic variation using two centrarchidae species, the pumpkinseed sunfish (Lepomis gibbosus) and the rock bass (Ambloplites rupestris), from two adjacent drainage systems. The striking difference between the spatial genetic variations of the two species suggests completely opposite patterns of colonization. Rock bass colonized the drainage system from a downstream source, which resulted in a loss of diversity in upstream populations and a strong differentiation between drainage systems. In contrast, the reduction of genetic diversity and increase of differentiation toward downstream populations that were observed among sunfish populations suggest colonization from upstream to downstream. The colonization pattern observed in sunfish, which result in low differentiation between upstream most sites of the two drainages, leads to a false genetic signal of current inter-drainage gene flow. The present study demonstrates through empirical evidence that colonization patterns may impede the capacity to estimate current connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Angers B, Bernatchez L (1998) Combined use of the SMM and non-SMM methods to infer fine structure and evolutionary history of closely related brook charr (Salvelinus fontinalis, Salmonidae) populations from microsatellites. Mol Biol Evol 15:143–159

    Article  CAS  Google Scholar 

  • Angers B, Magnan P, Plante M, Bernatchez L (1999) Canonical correspondence analysis for estimating spatial and environmental effects on microsatellite gene diversity in brook charr (Salvelinus fontinalis). Mol Ecol 8:1043–1053

    Article  Google Scholar 

  • Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  PubMed  CAS  Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. P Roy Soc Lon B Bio 263:1619–1626

    Article  Google Scholar 

  • Belkhir K, Borsa P, Chikki L (1996–2004) Genetix Version 4.05.2, Logiciel sous Windows pour la Génétique des populations. http://kimura.univ-montp2.fr/genetix/. Accessed 9 November 2011

  • Benzécri J-P (1973) L’Analyse des Données, vol II. L’Analyse des Correspondances, Dunod

    Google Scholar 

  • Bernatchez L, Wilson CC (1998) Comparative phylogeography of Nearctic and Palearctic fishes. Mol Ecol 7:431–452

    Article  Google Scholar 

  • Boizard J, Magnan P, Angers B (2009) Effects of dynamic landscape elements on fish dispersal: the example of creek chub (Semotilus atromaculatus). Mol Ecol 18:430–441

    Article  PubMed  CAS  Google Scholar 

  • Brinsmead J, Fox MG (2002) Morphological variation between lake- and stream-dwelling rock bass and pumpkinseed populations. J Fish Biol 61:1619–1638

    Article  Google Scholar 

  • Castric V, Bernatchez L (2004) Individual assignment test reveals differential restriction to dispersal between two salmonids despite no increase of genetic differences with distance. Mol Ecol 13:1299–1312

    Article  PubMed  CAS  Google Scholar 

  • Castric V, Bonney F, Bernatchez L (2001) Landscape structure and hierarchical genetic diversity in the brook charr, Salvelinus fontinalis. Evolution 55:1016–1028

    Article  PubMed  CAS  Google Scholar 

  • Chamberland JM (2011) Échantillonnage et modélisation de l’habitat des communautés de poissons de rivière des basses Laurentides. M.Sc thesis, Université de Montréal

  • Earl DA, von Holdt BM (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour. doi:10.1007/s12686-011-9548-7

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Fraser DJ, Bernatchez L (2005) Allopatric origins of sympatric brook charr populations: colonization history and admixture. Mol Ecol 14:1497–1509

    Article  PubMed  CAS  Google Scholar 

  • French III JRP (1988) Effect of submersed aquatic macrophytes on resource partitioning in yearling rock bass (Ambloplites rupestris) and pumpkinseeds (Lepomis gibbosus) in lake St. Clair. J Great Lakes Res 14:291–300

    Google Scholar 

  • Gabriel KR, Sokal RR (1969) A new statistical approach to geographic variation analysis. Syst Zool 18:259–270

    Article  Google Scholar 

  • Gagnon M-C, Angers B (2006) The determinant role of temporary proglacial drainages on the genetic structure of fishes. Mol Ecol 15:1051–1065

    Article  PubMed  CAS  Google Scholar 

  • Girard P (2011) A robust statistical method to detect null alleles in microsatellite and SNP datasets in both panmictic and inbred populations. Stat Appl Genet Molec Biol 10(1):Article 9

  • Girard P, Angers B (2006) The impact of postglacial marine invasions on the genetic diversity of an obligate freshwater fish, the longnose dace (Rhinichthys cataractae), on the Québec peninsula. Can J Fish Aquat Sci 63:1429–1438

    Article  Google Scholar 

  • Goudet J (2001) Fstat, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www2.unil.ch/popgen/softwares/fstat.htm. Accessed 9 November 2011

  • Hill AB (1966) Principles of medical statistics. Oxford University Press, London

    Google Scholar 

  • Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898–1914

    Article  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  PubMed  CAS  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed  Google Scholar 

  • Lacy RC (1987) Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection and population subdivision. Conserv Biol 1:143–158

    Google Scholar 

  • Legendre P, Legendre V (1984) Postglacial dispersal and freshwater fishes in the Québec peninsula. Can J Fish Aquat Sci 41:1781–1802

    Article  Google Scholar 

  • Mandrack NE, Crossman EJ (1992) Postglacial dispersal of freshwater fishes into Ontario. Can J Zool 70:2247–2259

    Article  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Manni F, Guerard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum Biol 76:173–190

    Article  PubMed  Google Scholar 

  • McElroy TC, Kandl KL, Garcia J, Trexler JL (2003) Extinctioncolonization dynamics structure genetic variation of spotted sunfish (Lepomis punctatus) in the Florida Everglades. Mol Ecol 12:355–368

    Article  PubMed  CAS  Google Scholar 

  • Monmonier MS (1973) Maximum-difference barriers: an alternative numerical regionalization method. Geogr Anal 5:245–261

    Article  Google Scholar 

  • Neff BD, Fu P, Gross MR (1999) Microsatellite evolution in sunfish (Centrarchidae). Can J Fish Aquat Sci 56:1198–1205

    CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Chakravarti A, Tateno Y (1977) Mean and variance of FST in a finite number of incompletely isolated populations. Theor Popul Biol 11:291–306

    Google Scholar 

  • Oksanen JF, Blanchet G, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2010) vegan: Community ecology package. R package version 1.17-5. http://CRAN.R-project.org/package=vegan. Accessed 11 November 2011

  • Paetkau D, Slade R, Burden M, Estoup A (2004) Direct, real-time estimation of migration rate using assignment methods: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65

    Article  PubMed  CAS  Google Scholar 

  • Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A (2004) GeneClass2: a software for genetic assignment and first generation migrants detection. J Hered 95:536–539

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/. Accessed 11 November 2011

  • Ramachandran S, Deshpande O, Roseman CC, Rosenberg NA, Feldman MW (2005) Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. P Natl Acad Sci 102:15942–15947

    Article  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GenePop version 1.2: population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Robinson BW, Wilson DS (1996) Genetic variation and phenotypic plasticity in a trophically polymorphic population of pumpkinseed sunfish (Lepomis gibbosus). Evol Ecol 10:631–652

    Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schable NA, Fischer RU, Glenn TC (2002) Tetranucleotide microsatellite DNA loci from the dollar sunfish (Lepomis marginatus). Mol Ecol Notes 2:509–511

    Article  CAS  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin: a software for population genetics data analysis. User manual version 2.000. Genetics and Biometry Laboratory, Department of Anthropology, University of Geneva

  • Schwartz RS, May B (2004) Characterization of microsatellite loci in Sacramento perch (Archoplites interruptus). Mol Ecol Notes 4:694–697

    Article  CAS  Google Scholar 

  • Scott WB, Crossman EJ (1973) Freshwater fishes of Canada. Fish Res Board Can 26:748–805

    Google Scholar 

  • Sork VL, Waits L (2010) Contributions of landscape genetics—approaches, insights, and future potential. Mol Ecol 19:3489–3495

    Article  PubMed  Google Scholar 

  • Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19:3496–3514

    Article  PubMed  Google Scholar 

  • Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF (1998) Comparative phylogeography and post-glacial colonization routes in Europe. Mol Ecol 7:453–464

    Article  PubMed  CAS  Google Scholar 

  • Turgeon J, Bernatchez L (2001) Mitochondrial DNA phylogeography of lake cisco (Coregonus artedi): evidence supporting extensive secondary contacts between two glacial races. Mol Ecol 10:987–1001

    Article  PubMed  CAS  Google Scholar 

  • Waples RS (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Hered 89:438–450

    Google Scholar 

  • Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: FST doesn’t equal 1/(4Nm + 1). Heredity 82:117–125

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Guillaume Bourque for his early comments on this work. We are also grateful to Dr. Daniel Boisclair’s team for their help in the field. FC was supported by a scholarship from the Natural Sciences and Engineering Research Council of Canada (NSERC). This work was supported by a “Fonds Québécois de Recherche en Nature et Technologie” (FQRNT, Quebec) grant to BA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Cyr.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 108 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cyr, F., Angers, B. Historical process lead to false genetic signal of current connectivity among populations. Genetica 139, 1417–1428 (2011). https://doi.org/10.1007/s10709-012-9640-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-012-9640-2

Keywords

Navigation