Skip to main content
Log in

Marker-assisted prediction of non-additive genetic values

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

It has become increasingly clear from systems biology arguments that interaction and non-linearity play an important role in genetic regulation of phenotypic variation for complex traits. Marker-assisted prediction of genetic values assuming additive gene action has been widely investigated because of its relevance in artificial selection. On the other hand, it has been less well-studied when non-additive effects hold. Here, we explored a nonparametric model, radial basis function (RBF) regression, for predicting quantitative traits under different gene action modes (additivity, dominance and epistasis). Using simulation, it was found that RBF had better ability (higher predictive correlations and lower predictive mean square errors) of predicting merit of individuals in future generations in the presence of non-additive effects than a linear additive model, the Bayesian Lasso. This was true for populations undergoing either directional or random selection over several generations. Under additive gene action, RBF was slightly worse than the Bayesian Lasso. While prediction of genetic values under additive gene action is well handled by a variety of parametric models, nonparametric RBF regression is a useful counterpart for dealing with situations where non-additive gene action is suspected, and it is robust irrespective of mode of gene action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bogdan M, Ghosh JK, Doerge RW (2004) Modifying the Schwarz Bayesian information criterion to locate multiple interacting quantitative trait loci. Genet Mol Res 167:989–999

    CAS  Google Scholar 

  • Broomhead D, Lowe D (1988) Multivariable functional interpolation and adaptive networks. Complex Syst 2:321–355

    Google Scholar 

  • Bulmer MG (1971) Effect of selection on genetic variance. Am Nat 105(943):201–211

    Article  Google Scholar 

  • Carlborg O, Jacobsson L, Ahgren P, Siegel P, Andersson L (2006) Epistasis and the release of genetic variation during long-term selection. Nat Genet 38(4):418–420

    Article  PubMed  CAS  Google Scholar 

  • Cockerham CC (1954) An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present. Genetics 39(6):859–882

    PubMed  CAS  Google Scholar 

  • Crow JF (2010) On epistasis: why it is unimportant in polygenic directional selection. Philos Trans R Soc B Biol Sci 365(1544):1241–1244

    Article  Google Scholar 

  • Daetwyler HD, Villanueva B, Woolliams JA (2008) Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS ONE 3:e3395

    Article  PubMed  Google Scholar 

  • de los Campos G, Gianola D, Rosa GJM (2009) Reproducing kernel Hilbert spaces regression: a general framework for genetic evaluation. J Anim Sci 87(6):1883–1887

    Article  Google Scholar 

  • de los Campos G, Gianola D, Rosa GJM, Weigel KA, Crossa J (2010) Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods. Genet Res 92:295–308

    Article  Google Scholar 

  • de los Campos G, Gianola D, Rosa GJM, Weigel KA, Vazquez AI, Allison DB (2010b) Semi-parametric marker-enabled prediciton of genetic values using reproducing kernel Hilbert spaces regressions. In: 9th World Congress on Genetics Applied to Livestock Production, Leipzig, Germany

  • de los Campos G, Naya H, Gianola D, Crossa J, Legarra A, Manfredi E, Weigel KA, Cotes J (2009) Predicting quantitative traits with regression models for dense molecular markers and pedigrees. Genetics 182(1):375–385

    Article  Google Scholar 

  • Fisher RA (1918) The correlation between relatives on the supposition of Mendelian inheritance. Philos Trans R Soc Edinb 52:399–433

    Google Scholar 

  • Gianola D, van Kaam J (2008) Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics 178(4):2289–2303

    Article  PubMed  Google Scholar 

  • Habier D, Fernando RL, Dekkers JC (2007) The impact of genetic relationship information on genome-assisted breeding values. Genetics 4(177):2389–2397

    Google Scholar 

  • Hallander J, Waldmann P (2007) The effect of non-additive genetic interactions on selection in multi-locus genetic models. Heredity 98:349–359

    PubMed  CAS  Google Scholar 

  • Hill WG (2010) Understanding and using quantitative genetic variation. Philos Trans R Soc B Biol Sci 365(1537):73–85

    Article  Google Scholar 

  • Hill WG, Goddard ME, Visscher PM (2008) Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet 4(2):e1000008

    Article  PubMed  Google Scholar 

  • Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K (2002) A comprehensive review of genetic association studies. Genet Med 4:45–61

    Article  PubMed  CAS  Google Scholar 

  • Kroymann J, Mitchell-Olds T (2005) Epistasis and balanced polymorphism influencing complex trait variation. Nature 435(7038):95–98

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, van der Werf JHJ, Hayes BJ, Goddard ME, Visscher PM (2008) Predicting unobserved phenotypes for complex traits from whole-genome SNP data. PLoS Genet 4(10):e1000231

    Article  PubMed  Google Scholar 

  • Long N, Gianola D, Rosa GJM, Weigel KA, Avendano S (2007) Machine learning classification procedure for selecting SNPs in genomic selection: application to early mortality in broilers. J Anim Breed Genet 124(6):377–389

    Article  PubMed  CAS  Google Scholar 

  • Long N, Gianola D, Rosa GJM, Weigel KA, Kranis A, González-Recio O (2010) Radial basis function regression methods for predicting quantitative traits using SNP markers. Genet Res 92(3):209–225

    Article  CAS  Google Scholar 

  • Łukaszewicz M (2001) Non-additive genetic effects in animal selection. J Appl Genet 42(4):467–478

    PubMed  Google Scholar 

  • Maenhout S, Baets BD, Haesaert G, Bockstaele EV (2007) Support vector machine regression for the prediction of maize hybrid performance. Theor Appl Genet 115:1003–1013

    Article  PubMed  CAS  Google Scholar 

  • Meuwissen THE (2009) Accuracy of breeding values of ‘unrelated’ individuals predicted by dense SNP genotyping. Genet Sel Evol 41:35

    Article  PubMed  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829

    PubMed  CAS  Google Scholar 

  • Micchelli CA (1986) Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr Approx 2:11–22

    Article  Google Scholar 

  • Mitchell T (1997) Machine learning. McGraw Hill, Hightstown, NJ, USA

    Google Scholar 

  • Muir WM (2007) Comparison of genomic and traditional BLUP-estimated breeding value accuracy and selection response under alternative trait and genomic parameters. J Anim Breed Genet 124(6):342–355

    Article  PubMed  CAS  Google Scholar 

  • Orr MJL (1995) Regularization in the selection of radial basis function centers. Neural Comput 7(3):606–623

    Article  Google Scholar 

  • Palucci V, Schaeffer LR, Miglior F, Osborne V (2007) Non-additive genetic effects for fertility traits in Canadian Holstein cattle. Genet Sel Evol 39(2):181–193

    Article  PubMed  Google Scholar 

  • Park T, Casella G (2008) The Bayesian lasso. J Am Stat Assoc 103:681–686

    Article  CAS  Google Scholar 

  • Poggio T, Girosi F (1989) A theory of networks for approximation and learning. A. I. Memo No. 1140, Artificial Intelligence Laboratory, Massachusetts Institute of Technology

  • Powell MJD (1987) Radial basis functions for multivariable interpolation: a review. In: Algorithms for approximation. Clarendon Press, New York, pp 143–167

  • Schölkopf B, Burges C, Vapnik V (1995) Extracting support data for a given task. In: Proceedings, first international conference on knowledge discovery and data mining, Menlo Park, pp 252–257

  • Sonesson AK, Meuwissen THE (2009) Testing strategies for genomic selection in aquaculture breeding programs. Genet Sel Evol 41:37

    Article  PubMed  Google Scholar 

  • Tikka J (2009) Simultaneous input variable and basis function selection for RBF networks. Neurocomputing 72(10–12):2649–2658

    Article  Google Scholar 

  • Varona L, Misztal I (1999) Prediction of parental dominance combinations for planned matings, methodology, and simulation results. J Dairy Sci 82:2186–2191

    Article  PubMed  CAS  Google Scholar 

  • Walsh B, Lynch M (2011) Evolution and selection of quantitative traits. online draft version: http://nitro.biosci.arizona.edu/zbook/NewVolume_2/newvol2.html#2A

  • Yi N, Shriner D, Banerjee S, Mehta T, Pomp D, Yandell BS (2007) An efficient Bayesian model selection approach for interacting quantitative trait loci models with many effects. Genetics 176(3):1865–1877

    Article  PubMed  Google Scholar 

  • Yi N, Xu S (2002) Mapping quantitative trait loci with epistatic effects. Genet Res 79:185–198

    Article  PubMed  Google Scholar 

  • Yi N, Xu S (2008) Bayesian LASSO for quantitative trait loci mapping. Genet Mol Res 179(2):1045–1055

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Wisconsin Agriculture Experiment Station, Aviagen Ltd., and by grants NRICGP/USDA 2003-35205-12833, NSF DEB-0089742 and NSF DMS-044371. We thank the editor and the reviewers for their insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanye Long.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, N., Gianola, D., Rosa, G.J.M. et al. Marker-assisted prediction of non-additive genetic values. Genetica 139, 843–854 (2011). https://doi.org/10.1007/s10709-011-9588-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-011-9588-7

Keywords

Navigation